精英家教網 > 高中數學 > 題目詳情
9.設U=R,A={x|x<1},B={x|x≥m},若∁UA⊆B,則實數m的范圍是m≤1.

分析 由于U=R,A={x|x<1},可得∁UA={x|x≥1},又B={x|x≥m},∁UA⊆B,即可得出.

解答 解:∵U=R,A={x|x<1},∴∁UA={x|x≥1},
又B={x|x≥m},∁UA⊆B,
∴m≤1.
則實數m的范圍是m≤1,
故答案為:m≤1.

點評 本題考查了集合的運算性質、不等式的性質,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

19.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為3,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(-1,-1),則雙曲線的標準方程為( 。
A.$\frac{x^2}{2}$-$\frac{y^2}{2}$=1B.$\frac{x^2}{4}$-$\frac{y^2}{4}$=1C.$\frac{x^2}{4}$-y2=1D.$\frac{x^2}{2}$-y2=1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知點($\frac{1}{2}$,$\frac{\sqrt{6}}{4}$)是等軸雙曲線C:$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{a}^{2}}$=1上一點,拋物線x2=2py(p>0)的焦點與雙曲線C的一個焦點重合.
(1)求拋物線的方程;
(2)若點P是拋物線上的動點,點A,B在x軸上,圓x2+(y-1)2=1內切于△PAB,求△PAB面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.不等式|2x-log2x|<2x+|log2x|成立,則( 。
A.1<x<2B.0<x<1C.x>1D.x>2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.已知復數Z滿足|Z|=$\sqrt{2}$,Z2的虛部是2.設Z,Z2,Z-Z2在復平面上的對應點分別為A,B,C,則△ABC的面積為4或1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.同時具有性質:
①最小正周期是π;
②圖象關于直線x=$\frac{π}{3}$對稱;
③在區(qū)間$[{\frac{5π}{6},π}]$上是單調遞增函數”的一個函數可以是(  )
A.$y=cos(\frac{x}{2}+\frac{π}{6})$B.$y=sin(2x+\frac{5π}{6})$C.$y=cos(2x-\frac{π}{3})$D.$y=sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知橢圓C1、拋物線C2的焦點均在x軸上,且橢圓C1的中心和拋物線C2的頂點均為原點O,從橢圓C1上取兩個點.拋物線C2上取一個點.將其坐標記錄于表中:
 x 3-2 $\sqrt{2}$
 y-2$\sqrt{3}$ 0 $\frac{\sqrt{6}}{2}$
(Ⅰ)求橢圓C1和拋物線C2的標準方程:
(Ⅱ)直線l:y=kx+m(k≠0)與橢圓C1交于不同的兩點M、N.
(i)若線段MN的垂直平分線過點G($\frac{1}{8}$,0),求實數k的取值范圍.
(ii)在滿足(i)的條件下,且有m≠=1,求△OMN的面積S△OMN

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.函數f(x)=cos(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,如果x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}$),且f(x1)=f(x2),則f(x1+x2)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知P為銳角三角形ABCD的AB邊上一點,A=60°,AC=4,則|$\overrightarrow{PA}$+3$\overrightarrow{PC}$|的最小值為( 。
A.4$\sqrt{3}$B.4$\sqrt{7}$C.6D.6$\sqrt{3}$

查看答案和解析>>

同步練習冊答案