若f(2x+1)的定義域?yàn)閇1,4],則f(x+3)的定義域?yàn)椋ā 。?table style="margin-left:0px;width:100%;">A.[0,
3
2
]B.[0,6]C.[
1
2
,
3
2
]D.[3,
9
2
]
∵函數(shù)f(2x+1)的定義域?yàn)閇1,4],
則3≤2x+1≤9,要使函數(shù)f(x+3)有意義
則3≤x+3≤9
則0≤x≤6.
故函數(shù)f(x+3)的定義域?yàn)閇0,6]
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過點(diǎn)A(1,2)、B(3,0),并且直線m:2x-3y=0平分圓C.
(1)求圓C的方程;
(2)過點(diǎn)D(0,3),且斜率為k的直線l與圓C有兩個(gè)不同的交點(diǎn)E、F,若|EF|≥2
3
,求k的取值范圍;
(3)若圓C關(guān)于點(diǎn)(
3
2
,1)
對(duì)稱的曲線為圓Q,設(shè)M(x1,y1)、P(x2,y2)(x1≠±x2)是圓Q上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M1,點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1過點(diǎn)B(0,-6)且與直線2x-3λy=0平行,直線l2經(jīng)過定點(diǎn)A(0,6)且斜率為-
3
,直線l1與l2相交于點(diǎn)P,其中λ∈R,
(1)當(dāng)λ=1時(shí),求點(diǎn)P的坐標(biāo).
(2)試問:是否存在兩個(gè)定點(diǎn)E、F,使得|PE|+|PF|為定值,若存在,求出E、F的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃浦區(qū)二模)設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過點(diǎn)F的動(dòng)直線l交拋物線C于A(x1,y1),B(x2,y2)兩點(diǎn),且y1y2=-4.
(1)求拋物線C的方程;
(2)若直線2x+3y=0平分線段AB,求直線l的傾斜角.
(3)若點(diǎn)M是拋物線C的準(zhǔn)線上的一點(diǎn),直線MF,MA,MB的斜率分別為k0,k1,k2.求證:當(dāng)k0=1時(shí),k1+k2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax+數(shù)學(xué)公式-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個(gè)解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案