17.對任意兩個非零的平面向量$\overrightarrow{α}$和$\overrightarrow{β}$,定義$\overrightarrow{α}$○$\overrightarrow{β}$=$\frac{\overrightarrow{α}•\overrightarrow{β}}{\overrightarrow{β}•\overrightarrow{β}}$,若兩個非零的平面向量$\overrightarrow{a}$,$\overrightarrow$,滿足$\overrightarrow{a}$與$\overrightarrow$的夾角θ∈($\frac{π}{6}$,$\frac{π}{2}$),且$\overrightarrow{a}$○$\overrightarrow$與$\overrightarrow$○$\overrightarrow{a}$都在集合{$\frac{n}{2}$|n∈Z}中,則$\overrightarrow{a}$○$\overrightarrow$=( 。
A.$\frac{5}{2}$或$\frac{3}{2}$B.$\frac{3}{2}$或1C.1或$\frac{1}{2}$D.$\frac{1}{2}$或$\frac{5}{2}$

分析 由題意利用兩個向量的數(shù)量積的定義求得$\overrightarrow{a}$○$\overrightarrow$的解析式,得到cos2θ=$\frac{mn}{4}$∈(0,$\frac{3}{4}$),可得整數(shù)m,n的值,從而求得$\overrightarrow{a}$○$\overrightarrow$的值.

解答 解:由題意可得則$\overrightarrow{a}$○$\overrightarrow$=$\frac{\overrightarrow{a}•\overrightarrow}{\overrightarrow•\overrightarrow}$=$\frac{|\overrightarrow{a}|•|\overrightarrow|}{{|\overrightarrow|}^{2}}$cosθ=$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$cosθ=$\frac{n}{2}$,同理可得$\overrightarrow$○$\overrightarrow{a}$=$\frac{|\overrightarrow|}{|\overrightarrow{a}|}$cosθ=$\frac{m}{2}$,m、n∈Z.
∵θ∈($\frac{π}{6}$,$\frac{π}{2}$),∴cosθ∈(0,$\frac{\sqrt{3}}{2}$),∴cos2θ=$\frac{mn}{4}$∈(0,$\frac{3}{4}$),根據(jù)$\overrightarrow{a}$○$\overrightarrow$與$\overrightarrow$○$\overrightarrow{a}$都在集合{$\frac{n}{2}$|n∈Z}中,
∴m=1,n=2,或 m=2,n=1,或m=1,n=1,
∴$\overrightarrow{a}$○$\overrightarrow$=1 或$\frac{1}{2}$,
故選:C.

點評 本題主要考查兩個向量的數(shù)量積的定義,得到m、n∈z,且$\frac{mn}{4}$∈(0,$\frac{3}{4}$),是解題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,x≤0}\\{{e}^{x}-5,x>0}\end{array}\right.$若關于x的方程|f(x)|-ax-5=0恰有三個不同的實數(shù)解,則滿足條件的所有實數(shù)a的取值集合為{-e,-$\frac{5}{ln5}$,2,$\frac{5}{2}$}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設變量x,y滿足約束條件$\left\{\begin{array}{l}x+2y-4≤0\\ 3x+y-3≥0\\ x-y-1≤0\end{array}\right.$,則$z=\frac{y}{x+1}$的最大值為( 。
A.$\frac{9}{7}$B.$\frac{1}{3}$C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在三棱錐P-ABC中,PA⊥平面ABC,PA=2,BC=$\sqrt{2}$,又∠BAC=135°,則該三棱錐外接球的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若雙曲線的頂點為橢圓2x2+y2=2長軸的端點,且雙曲線的離心率與該橢圓的離心率的積為1,則雙曲線的方程是(  )
A.x2-y2=1B.y2-x2=1C.y2-x2=2D.x2-y2=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.(1)已知函數(shù)f(x)=|x-1|+|x-3|,g(a)=4a-a2,使不等式f(x)>g(a)對?a∈R恒成立,求實數(shù)x的取值范圍;
(2)已知a,b,c∈R+,a+b+c=1,求$\sqrt{a}$+$\sqrt{2b}$+$\sqrt{3c}$的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若a<b<0,那么下列不等式成立的是(  )
A.ab<b2B.a2<b2C.lg(-ab)<lg(-a2D.2${\;}^{\frac{1}}$<2${\;}^{\frac{1}{a}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如圖,有一建筑物OP,為了測量它的高度,在地面上選一長度為40m的基線AB,若在點A處測得P點的仰角為30°,在B點處的仰角為45°,且∠AOB=30°,則建筑物的高度為( 。
A.20mB.20$\sqrt{2}$mC.20$\sqrt{3}$mD.40m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某校隨機調(diào)查了110名不同性別的學生每天在校的消費情況,規(guī)定:50元以下為正常消費,大于或等于50元為非正常消費.統(tǒng)計后,得到如下的2×2列聯(lián)表,已知在調(diào)查對象中隨機抽取1人,為非正常消費的概率為$\frac{3}{11}$.
正常非正常合計
302050
501060
合計8030110
(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),能否有99%的把握認為消費情況與性別有關系?
附臨界值表參考公式:
P(K2≥k00.1000.050.0250.0100.001
k02.7063.8415.0246.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

同步練習冊答案