11.在△ABC中,$a=3,c=2,B=\frac{π}{3}$,則b=( 。
A.19B.7C.$\sqrt{19}$D.$\sqrt{7}$

分析 根據(jù)題意,將a、c、B的值代入余弦定理b2=a2+c2-2accosB中,可得b2的值,進而可得b的值,即可得答案.

解答 解:根據(jù)題意,△ABC中,$a=3,c=2,B=\frac{π}{3}$,
則b2=a2+c2-2accosB=9+4-6=7,
即b=$\sqrt{7}$;
故選:D.

點評 本題考查余弦定理的應用,熟練運用余弦定理是解題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,正三棱錐A-BCD的側(cè)棱長為2,底面BCD的邊長為2$\sqrt{2}$,E,分別為BC,BD的中點,則三棱錐A-BEF的外接球的半徑R=1,內(nèi)切球半徑r=2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知l1:2x+my=0與l2:y=3x-1,若兩直線平行,則m的值為$-\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在△ABC的邊BC上取一個點P,記△ABP和△ACP的面積分別為S1和S2,則S1>3S2的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求值:
(1)$\frac{2cos10°-sin20°}{cos20°}$.
(2)已知α,β為銳角,sinα=$\frac{8}{17}$,cos(α-β)=$\frac{21}{29}$,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在四棱錐P-ABCD中,平面PAD⊥平面ABCD,△PAD為等邊三角形,AB=AD=$\frac{1}{2}$CD,AB⊥AD,AB∥CD,點M是PC的中點.
(I)求證:MB∥平面PAD;
(Ⅱ)求二面角P-BC-D的余弦值;
(Ⅲ)在線段PB上是否存在點N,使得DN⊥平面PBC?若存在,請求出$\frac{PN}{PB}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知圓C與兩平行直線 x-y-8=0和x-y+4=0相切,圓心在直線2x+y-10=0上.
(1)求圓C的方程.
(2)過原點O做一條直線,交圓C于M,N兩點,求OM*ON的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.假設要抽查某企業(yè)生產(chǎn)的某種品牌的袋裝牛奶的質(zhì)量是否達標.現(xiàn)從800袋牛奶中抽取50袋進行檢驗.利用隨機數(shù)表抽取樣本時,先將800袋牛奶按000,001,…,799進行編號.如果從隨機數(shù)表第3行第1組數(shù)開始向右讀,最先讀到的5袋牛奶的編號是614,593,379,242,203,722,請你以此方式繼續(xù)向右讀數(shù),隨后讀出的2袋牛奶的編號是104,088.
(下面摘取了隨機數(shù)表第1行至第5行)
78226    85384     40527     48987     60602     16085     29971     61279
43021    92980     27768     26916     27783     84572     78483     39820
61459    39073      79242    20372     21048     87088     34600     74636
63171    58247     12907     50303     28814     40422     97895     61421
42372    53183     51546     90385     12120     64042     51320     22983.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,已知|AB|=10,圖中的一系列圓是圓心分別為A、B的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,n,….利用這兩組同心圓可以畫出以A、B為焦點的橢圓或雙曲線.若其中經(jīng)過點M、N的橢圓的離心率分別是eM,eN,經(jīng)過點P,Q的雙曲線的離心率分別是eP,eQ,則它們的大小關(guān)系是(  )
A.eM<eN<eQ<ePB.eN<eM<eP<eQC.eP<eQ<eM<eND.eQ<eN<eM<eP

查看答案和解析>>

同步練習冊答案