分析 求出x+$\frac{π}{3}$的范圍,根據(jù)正弦函數(shù)的單調(diào)性得出f(x)的最小值,列出方程解出a.
解答 解:∵x∈[-$\frac{π}{3}$,$\frac{5π}{6}$],∴x+$\frac{π}{3}$∈[0,$\frac{7π}{6}$],
∴當(dāng)x+$\frac{π}{3}$=$\frac{7π}{6}$時(shí),f(x)取得最小值.
∴fmin(x)=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$+a=$\sqrt{3}$,解得a=$\frac{1+\sqrt{3}}{2}$.
故答案為$\frac{1+\sqrt{3}}{2}$.
點(diǎn)評 本題考查了正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (-∞,1) | C. | (2,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3\sqrt{2}}}{8}$ | B. | $\frac{{5\sqrt{2}}}{8}$ | C. | $\frac{{7\sqrt{2}}}{8}$ | D. | $\frac{{\sqrt{2}}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$ | B. | $\frac{{x}^{2}}{12}+\frac{{y}^{2}}{9}=1$ | C. | $\frac{{x}^{2}}{5}+\frac{{y}^{2}}{3}=1$ | D. | $\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com