8.已知直線ax+(2-a)y+4=0與x+ay-2=0平行,則實(shí)數(shù)a的值為( 。
A.1B.-2C.1或-2D.0或1

分析 根據(jù)直線平行的條件,建立方程即可.

解答 解:若a=0,則兩個(gè)直線方程為x=2和y=2.此時(shí)兩直線不平行.
若a≠0,若兩直線平行,則$\frac{a}{1}=\frac{2-a}{a}$,
解得a=1或a=-2,
當(dāng)a=1時(shí),兩直線方程為x+y+4=0和x+y-2=0,不滿足兩直線平行.
當(dāng)a=-2時(shí),兩直線方程為-2x+4y+4=0和x-2y-2=0,兩直線重合.
∴a=1.
故選A.

點(diǎn)評(píng) 本題主要考查直線的方程以及直線平行的等價(jià)條件,注意對(duì)a要進(jìn)行討論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2+2ax+2,x∈[-5,5].
(1)當(dāng)a=-1時(shí),求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)a的取值范圍,使y=f(x)在區(qū)間[-5,5]上不是單調(diào)函數(shù);并求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1.求:
(1)$\overrightarrow{a}$•$\overrightarrow$;    
(2)|$\overrightarrow{a}$+2$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.計(jì)算:
(1)$\frac{lg2+lg5-lg8}{lg50-lg40}$
(2)$2^{2+{log}_{\sqrt{2}}\frac{1}{4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.等比數(shù)列{an}的前n項(xiàng)和為Sn,且S10=33S5,則q=(  )
A.-2B.1C.2D.±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有Sn=$\frac{3}{2}$an+n-3成立.
(1)求證:存在實(shí)數(shù)λ使得數(shù)列{an+λ}為等比數(shù)列;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖所示框圖,如果計(jì)算  1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{19}$的值,則判斷框內(nèi)應(yīng)填入的條件是(  )
A.n>10?B.n<11?C.n>9?D.n>11?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=x2-2x+5,g(x)=mx-$\frac{2}{x}$,若對(duì)任意的x1∈[0,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,則實(shí)數(shù)m的取值范圍是( 。
A.[0,6]B.[6,7]C.[$\frac{27}{8}$,7]D.[$\frac{27}{8}$,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.4π+8B.$4π+\frac{8}{3}$C.$\frac{4π}{3}+8$D.$\frac{4π+8}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案