18.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.4π+8B.$4π+\frac{8}{3}$C.$\frac{4π}{3}+8$D.$\frac{4π+8}{3}$

分析 由三視圖可知,幾何體是半圓錐與三棱錐的組合體,圓錐的底面半徑是2,高為2,三棱錐的底面面積為$\frac{1}{2}×4×2$=4,高為2,即可求出該幾何體的體積.

解答 解:由三視圖可知,幾何體是半圓錐與三棱錐的組合體,圓錐的底面半徑是2,高為2,三棱錐的底面面積為$\frac{1}{2}×4×2$=4,高為2,∴該幾何體的體積為$\frac{1}{3}π•{2}^{2}•2•\frac{1}{2}$+$\frac{1}{3}×4×2$=$\frac{4π+8}{3}$,
故選D.

點(diǎn)評 本題考查幾何體的體積,確定幾何體直觀圖的形狀是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知直線ax+(2-a)y+4=0與x+ay-2=0平行,則實(shí)數(shù)a的值為( 。
A.1B.-2C.1或-2D.0或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x2-alnx(常數(shù)a>0),函數(shù)f(x)在區(qū)間(1,ea)上有兩個(gè)零點(diǎn),則a的取值范圍是(2e,+∞)(e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,三個(gè)內(nèi)角分別為A,B,C,已知sin(A+$\frac{π}{6}$)=2cosA.
(1)求角A的值;
(2)若B∈(0,$\frac{π}{3}$),且cos(A-B)=$\frac{4}{5}$,求sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)y=f(x)的圖象上的每一點(diǎn)的縱坐標(biāo)擴(kuò)大到原來的3倍,橫坐標(biāo)擴(kuò)大到原來的2倍,然后把所得的圖象沿x軸向左平移$\frac{π}{6}$,這樣得到的曲線和y=2sinx的圖象相同,則已知函數(shù)y=f(x)的解析式為f(x)=$\frac{2}{3}$sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=sin(2x+φ)(0<φ<π)的圖象向右平移$\frac{π}{4}$個(gè)單位后與y=sin2x的圖象重合,則φ=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=loga|x-1|在(-∞,1)上單調(diào)遞增,則f(a+2)與f(3)的大小關(guān)系是( 。
A.f(a+2)>f(3)B.f(a+2)<f(3)C.f(a+2)=f(3)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.U=R,設(shè)A={x|x≥1或x≤-3},B={x|-4<x<0},求:
(1)A∩B,A∪B;
(2)∁UA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)求下列函數(shù)的導(dǎo)數(shù):
①f(x)=(1-x)(1+x)(1+x2)(1+x4);
②f(x)=$\frac{2^x}{ln2}$.
(2)設(shè)$f(x)=\frac{2sinx}{{1+{x^2}}}$,如果$f'(x)=\frac{2}{{{{(1+{x^2})}^2}}}•g(x)$,試求g(x)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案