18.將6個不同的小球放進(jìn)4個不同的盒子,每個小球放入任何一個盒子都是等可能的,則4個盒子中小球的數(shù)量恰好是3,2,1,0的概率是$\frac{45}{128}$.。ㄓ脭(shù)字作答)

分析 將6個不同的小球放進(jìn)4個不同的盒子,每個小球放入任何一個盒子都是等可能的,先求出基本事件總數(shù),再求出4個盒子中小球的數(shù)量恰好是3,2,1,0包含的基本事件個數(shù),由此能求出4個盒子中小球的數(shù)量恰好是3,2,1,0的概率.

解答 解:將6個不同的小球放進(jìn)4個不同的盒子,每個小球放入任何一個盒子都是等可能的,
基本事件總數(shù)為n=46=4096,
4個盒子中小球的數(shù)量恰好是3,2,1,0包含的基本事件個數(shù)為m=${C}_{6}^{3}{C}_{3}^{2}{C}_{1}^{1}{A}_{4}^{3}$=1440,
∴4個盒子中小球的數(shù)量恰好是3,2,1,0的概率p=$\frac{m}{n}=\frac{1440}{4096}$=$\frac{45}{128}$.
故答案為:$\frac{45}{128}$.

點(diǎn)評 本題考查概率的求法,是中檔題,解題時要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax+$\frac{4}{x}$.
(1)若連續(xù)擲兩次質(zhì)地均勻的骰子(骰子六個面上標(biāo)注的點(diǎn)數(shù)分別為1,2,3,4,5,6)得到的點(diǎn)數(shù)分別為a和b,記事件B={f(x)>b2在x∈(0,+∞)恒成立},求事件B發(fā)生的概率.
(2)從區(qū)間(-2,2)內(nèi)任取一個實(shí)數(shù)a,設(shè)事件A={方程f(x)-2=0有兩個不同的正實(shí)數(shù)根},求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)y=cos($\frac{3π}{2}$-2x)的單調(diào)增區(qū)間是[$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ],k∈Z..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若圓柱與圓錐的底面半徑相等,母線也相等,它們的側(cè)面積分別為S1和S2,則S1:S2=(  )
A.1:2B.2:1C.1:3D.3:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等差數(shù)列{an}中,a1>0,a2015+a2016>0,a2015a2016<0,則使前n項(xiàng)和Sn>0成立的最大自然數(shù)n是( 。
A.2015B.2016C.4030D.4031

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知△ABC是邊長為1的等邊三角形,點(diǎn)D,E分別是邊AB,BC的中點(diǎn),連接DE并延長到點(diǎn)F,使得DE=4EF,則$\overrightarrow{AF}•\overrightarrow{BC}$的值為( 。
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.從某居民區(qū)隨機(jī)抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}$xi=80,$\sum_{i=1}^{10}$yi=20,$\sum_{i=1}^{10}$xiyi=184,$\sum_{i=1}^{10}$x${\;}_{i}^{2}$=720.(b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$)
(Ⅰ)求家庭的月儲蓄y對月收入x的線性回歸方程;
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,AB是⊙O的直徑,AD,DE是⊙O的切線.AD,BE的延長線交于點(diǎn)C.
(1)求證:A、O、E、D四點(diǎn)共圓;
(2)若OA=$\sqrt{3}$CE,∠B=30°,求CD長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)復(fù)數(shù)z滿足(2z-i)(2-i)=5,則復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案