10.如圖,直線AB經過⊙O上一點C,⊙O的半徑為3,△AOB是等腰三角形,且C是AB中點,⊙O交直線OB于E、D.
(Ⅰ)證明:直線AB與⊙O相切;
(Ⅱ)若∠CED的正切值為$\frac{1}{2}$,求OA的長.

分析 (Ⅰ)連接OC,證明:OC⊥AB,即可證明直線AB與⊙O相切;
(Ⅱ)證明△BCD∽△BEC,可得$\frac{BD}{BC}=\frac{CD}{EC}=\frac{1}{2}$,利用切割線定理,求OA的長.

解答 解:(Ⅰ)連接OC,
∵OA=OB,CA=CB,
∴OC⊥AB,
∴AB是⊙O的切線,即直線AB與⊙O相切.
證明:(Ⅱ)依題意知,DE是直徑,
∴∠ECD=90°,
∴在Rt△ECD中,由tan∠CED=$\frac{1}{2}$,得$\frac{CD}{EC}=\frac{1}{2}$,
∵AB是⊙O的切線,
∴∠BCD=∠E,
又∵∠CBD=∠EBC,
∴△BCD∽△BEC,
∴$\frac{BD}{BC}=\frac{CD}{EC}=\frac{1}{2}$,設BD=x,則BC=2x,
又BC2=BD•BE,
∴(2x)2=x•(x+6),解得x1=0,x2=2,
∵BD=x>0,
∴BD=2,
∴OA=OB=BD+OD=3+2=5.

點評 本題考查圓的切線的證明,考查三角形相似的判定與性質,考查切割線定理,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)短軸的一個端點與其兩個焦點構成面積為3的直角三角形.
(1)求橢圓C的方程;
(2)過圓E:x2+y2=2上任意一點P作圓E的切線l,l與橢圓C交于A、B兩點,以AB為直徑的圓是否過定點,如過,求出該定點;不過說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知定點P(4,$\frac{π}{3}$),將極點O移至O′(2$\sqrt{3}$,$\frac{π}{6}$)處,極軸方向不變,則點P的新的極坐標為( 。
A.(4,$\frac{2π}{3}$)B.(4,$\frac{4π}{3}$)C.(2,$\frac{2π}{3}$)D.(2,$\frac{4π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖:已知平面ABCD⊥平面BCE,平面ABE⊥平面BCE,AB∥CD,AB=BC=4,CD=2,△BEC為等邊三角形,P是線段CD上的動點.
(1)求證:平面ABE⊥平面ADE;
(2)求直線AB與平面APE所成角的最大值;
(3)是否存在點P,使得AP⊥BD?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.以原點為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=$\sqrt{2}$,點M的極坐標為(2$\sqrt{2}$,$\frac{π}{4}$).
(1)寫出曲線C的參數(shù)方程,并求曲線C在點(1,1)處的切線的極坐標方程;
(2)若點N為曲線C上的動點,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=loga$\frac{1+x}{mx-2m+1}$(a>0,a≠1)的圖象關于原點成中心對稱,其定義域為區(qū)間D.
(1)求實數(shù)m的值及函數(shù)的定義域D;
(2)若關于x的不等式f(x)>loga$\frac{(x-1)(7-x)}$對于?x∈[2,6]恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知圓C經過三點O(0,0),M1(1,1),M2(4,2).
(1)求圓C的方程;
(2)設直線x-y+m=0與圓C交于不同的兩點A,B,且線段AB的中點在圓x2+y2=5上,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設函數(shù)f(x)=|x+1|+|x-5|,x∈R.
(Ⅰ)求不等式f(x)≤x+10的解集;
(Ⅱ)如果關于x的不等式f(x)≥a-(x-2)2在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)f(x)=lnx-x+1的零點個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案