已知橢圓的短半軸長為1,離心率e滿足0<e≤
3
2
,則長軸長的取值范圍是
 
考點(diǎn):橢圓的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:由橢圓的短半軸長為1,離心率e滿足0<e≤
3
2
,可得0<1-
1
a2
3
4
,由此可求長軸長的取值范圍.
解答: 解:∵橢圓的短半軸長為1,離心率e滿足0<e≤
3
2
,
∴0<1-
1
a2
3
4
,
∴1<a2≤4,
∴1<a≤2,
∴2<2a≤4,即長軸長的取值范圍是(2,4].
故答案為:(2,4].
點(diǎn)評:本題考查長軸長的取值范圍,考查橢圓的離心率,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x4-x2
x2+1
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,過點(diǎn)P(18,
π
2
)引圓ρ=10sinθ的兩條切線PA,PB,切點(diǎn)分別為A,B,則線段AB的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,對大于或等于2的自然數(shù)M的n次冪進(jìn)行如下方式的“分裂”:依此類推,20143“分裂”中最大的數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

.已知x∈(0,+∞),不等式x+
1
x
≥2,x+
4
x2
≥3,x+
27
x3
≥4,…,可推廣為x+
a
xn
≥n+1,則a等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,2a3-a72+2a11=0,數(shù)列{bn}是等比數(shù)列,且b7=a7,則b7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x=
5
2
,則
x+1
-
x-1
x+1
+
x-1
+
x+1
+
x-1
x+1
-
x-1
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實(shí)數(shù)x使|x-a|+|x-1|≤3成立,則實(shí)數(shù)a的取值范圍是( 。
A、-1<a≤3
B、-1≤a≤3
C、-2≤a<4
D、-2≤a≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,AB⊥BC,AB=BC=
1
2
PA,點(diǎn)O、D分別是AC、PC的中點(diǎn),OP⊥底面ABC,則直線OD與平面PBC所成角的正弦值(  )
A、
21
6
B、
8
3
3
C、
210
60
D、
210
30

查看答案和解析>>

同步練習(xí)冊答案