A. | 2 | B. | 2.5 | C. | 3 | D. | 3.5 |
分析 延長BN交AC于D,運用三角形全等的判定和性質,可得N為BD的中點,MN是△BCD的中位線,由中位線定理,計算即可得到所求值.
解答 解:延長BN交AC于D,
∵∠BAN=∠DAN,AN=AN,∠ANB=∠AND,
∴△ABN≌△ADN,N為BD的中點,
∴MN是△BCD的中位線,
∴MN=$\frac{1}{2}$CD=$\frac{1}{2}$(AC-AD)=$\frac{1}{2}$(AC-AB),
∵AB=14,AC=19,
∴MN=$\frac{1}{2}$(19-14)=2.5.
故選:B.
點評 本題考查三角形的全等的判定和性質,以及中位線定理的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 0 | C. | 2 | D. | π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1 | D. | $\frac{5{x}^{2}}{16}$-$\frac{5{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 垂直于同一條直線的兩條直線相互垂直 | |
B. | 若一條直線平行于兩個相交平面,則這條直線與這兩個平面的交線平行 | |
C. | 若一個平面經過另一個平面的垂線,那么這兩個平面相互垂直 | |
D. | 若一個平面內的兩條相交直線與另一個平面內的相交直線分別平行,那么這兩個平面相互平行 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com