6.設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且f′(x)<f(x)對(duì)于x∈R恒成立,則(  )
A.e2f(-2)>f(0),f(2)>e2f(0)B.e2f(-2)<f(0),f(2)<e2f(0)
C.e2f(-2)>f(0),f(2)<e2f(0)D.e2f(-2)<f(0),f(2)>e2f(0)

分析 構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{e}^{x}}$,利用導(dǎo)數(shù)判斷其單調(diào)性即可得出.

解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,則g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$<0.
∴函數(shù)g(x)在R上單調(diào)遞減,
故g(-2)>g(0),即$\frac{f(-2)}{{e}^{-2}}$>$\frac{f(0)}{{e}^{0}}$,即e2f(-2)>f(0),
g(2)<g(0),即$\frac{f(2)}{{e}^{2}}$<$\frac{f(0)}{{e}^{0}}$,即f(2)<e2f(0),
故選:C.

點(diǎn)評(píng) 本題是一個(gè)知識(shí)點(diǎn)交匯的綜合題,考查綜合運(yùn)用函數(shù)思想解題的能力.恰當(dāng)構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{e}^{x}}$,利用導(dǎo)數(shù)判斷其單調(diào)性是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知點(diǎn)P在拋物線y2=4x上,則點(diǎn)P到直線l1:4x-3y+11=0的距離和到l2:x=-1的距離之和的最小值為( 。
A.$\frac{37}{16}$B.3C.2D.$\frac{11}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖是網(wǎng)絡(luò)工作者經(jīng)常用來(lái)解釋網(wǎng)絡(luò)運(yùn)作的蛇形模型:數(shù)字1出現(xiàn)在第1行;數(shù)字2,3出現(xiàn)在第2行;數(shù)字6,5,4(從左至右)出現(xiàn)在第3行;數(shù)字7,8,9,10出現(xiàn)在第4行;依此類(lèi)推,則第63行從左至右的第7個(gè)數(shù)是2010.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=x2ex,則f(x)的極大值為$\frac{4}{{e}^{2}}$,若f(x)在[t,t+1]上不單調(diào),則t的取值范圍是(-3,-2)∪(-1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖,過(guò)原點(diǎn)斜率為k的直線與曲線y=lnx交于兩點(diǎn)A(x1,y1),B(x2,y2
①k的取值范圍是(0,$\frac{1}{e}$).
②$\frac{1}{x_1}$<k<$\frac{1}{x_2}$.
③當(dāng)x∈(x1,x2)時(shí),f(x)=kx-lnx先減后增且恒為負(fù).
以上結(jié)論中所有正確結(jié)論的序號(hào)是( 。
A.B.①②C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.
(1)當(dāng)a=-1時(shí),解不等式f(x)≤g(x);
(2)若存在x0∈R,使得f(x0)≥$\frac{1}{2}$g(x0),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.橢圓$\frac{x^2}{25}+{y^2}$=1上一點(diǎn)P到焦點(diǎn)F1的距離等于6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離為( 。
A.10B.8C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.A,B,C為圓O上三點(diǎn),且直線OC與直線AB交于圓外一點(diǎn),若$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,則m+n的范圍是(  )
A.(0,1)B.(1,+∞)C.(-1,0)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立坐標(biāo)系,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程;
(2)曲線C2的極坐標(biāo)方程為θ=$\frac{π}{6}$(ρ∈R),求C1與C2的公共點(diǎn)的極坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案