下列求導(dǎo)運(yùn)算正確的是( 。
①(x+
1
x
)′=1+
1
x2
 
②(log2x)′=
1
xln2
  
③(3x)′=3xlog3e  
④(x2cosx)′=-2xsinx 
⑤(
ex+1
ex-1
)′=
-2ex
(ex-1)2

⑥(exln(2x-5))′=exln(2x-5)+
ex
2x-5
A、①②③B、②④⑤
C、②⑤D、②⑤⑥
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)的公式和運(yùn)算法則分別進(jìn)行判斷即可得到結(jié)論.
解答: 解:①(x+
1
x
)′=1-
1
x2
,∴①錯(cuò)誤.
②(log2x)′=
1
xln2
,正確.
③(3x)′=3xln3,∴③錯(cuò)誤.
④(x2cosx)′=2xcosx-x2sinx,∴④錯(cuò)誤.
⑤(
ex+1
ex-1
)′=
-2ex
(ex-1)2
,正確.
⑥(exln(2x-5))′=exln(2x-5)+
ex
2x-5
×2=exln(2x-5)+
2ex
2x-5
,∴⑥錯(cuò)誤.
綜上所述,求導(dǎo)運(yùn)算正確的是②⑤,
故選:C.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的計(jì)算和公式公式的應(yīng)用,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,不等式組
x≥0
y≥0
x+y-8≤0
所表示的平面區(qū)域是α,不等式組所表示的平面區(qū)域是
0≤x≤4
0≤y≤10
所表示的平面區(qū)域是β.從區(qū)域α中隨機(jī)取一點(diǎn)P(x,y),則P為區(qū)域β內(nèi)的點(diǎn)的概率是( 。
A、
1
4
B、
3
5
C、
3
4
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù)(x∈R),如:[-1,3]=-2,[0,8]=0,[3,4]=3.定義{x}=x-[x],給出如下命題:
①使[x+1]=3成立的x的取值范圍是2≤x<3;
②函數(shù)y={x}的定義域?yàn)镽,值域?yàn)閇0,1];
③{
2013
2014
}+{
20132
2014
}+{
20133
2014
}+…+{
20132014
2014
}=1007;
④設(shè)函數(shù)f(x)=
x-[x]    x≥0
f(x+1),x<0
,則函數(shù)y=f(x)-
1
4
x-
1
4
的不同零點(diǎn)有3個(gè).
其中正確的命題有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,-3,5)與向量
b
=(3,λ,
15
2
)平行,則λ=(  )
A、
2
3
B、
9
2
C、-
9
2
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:(x+1)2+(y-1)2=1,圓C2與圓C1關(guān)于直線x-y=0對(duì)稱,則圓C2的方程為( 。
A、(x-1)2+(y+1)2=1
B、(x-1)2+(y-1)2=1
C、(x+1)2+(y+1)2=1
D、(x+1)2+(y-1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若3cosβ+4sinβ=5,則tanβ=( 。
A、-
1
4
B、
4
3
C、-
3
4
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,AB=
3
,BC=1,sinC=
3
cosC,則△ABC的面積為( 。
A、
7
5
B、
11
4
C、
3
2
D、
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若P是拋物線x2=4y上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到直線l1:y=-1,l2:3x+4y+12=0的距離之和的最小值為( 。
A、3
B、4
C、
16
5
D、
19
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(π+α)+cos(
π
2
+α)=-m,求cos(
2
-α)+2sin(2π+α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案