3.已知點A(1,2,3),則點A關(guān)于平面xOy的對稱點B的坐標(biāo)為(  )
A.(1,-2,-3)B.(-1,2,3)C.(1,2,-3)D.(-1,-2,3)

分析 直接利用空間直角坐標(biāo)系,求出點A(1,2,3),關(guān)于xoy平面的對稱點的坐標(biāo)即可.

解答 解:點A(1,2,3),關(guān)于xoy平面的對稱點,縱橫坐標(biāo)不變,豎坐標(biāo)變?yōu)橄喾磾?shù),即所求的坐標(biāo)(1,1,-3),
故選:C.

點評 本題是基礎(chǔ)題,考查空間直角坐標(biāo)系對稱點的坐標(biāo)的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.用秦九韶算法求多項式f(x)=7x5+5x4+3x3+x2+x+2在x=2的值時,令v0=a5,v1=v0x+5,…,v5=v4x+2,則v3的值為83.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.關(guān)于x的方程cos2x+sinx+a=0在0<x≤$\frac{π}{2}$上有解,則a的取值范圍是[-$\frac{5}{4}$,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若非零向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow b$|=1,$\overrightarrow a$與$\overrightarrow b$-$\overrightarrow a$的夾角為120°,則|$\overrightarrow a$|的取值范圍是(0,$\frac{2\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某學(xué)校團委組織了“文明出行,愛我中華”的知識競賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(單位:分)整理后,得到如圖頻率分布直方圖(其中分組區(qū)間為[40,50),[50,60),…,[90,100]).
(1)求成績在[70,80)的頻率和[70,80)這組在頻率分布直方圖中的縱坐標(biāo)a的值;
(2)求這次考試平均分的估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖給出的是求$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是①
①i>10?
②i<10?
③i>20?
④i<20?
⑤i=11?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.圓x2+y2+4x-4y-1=0與圓x2+y2+2x-13=0相交于P,Q兩點,則直線PQ的方程為x-2y+6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x,y滿足$\left\{\begin{array}{l}y≥x\\ x+y≤4\\ x≥1\end{array}\right.$,則$\frac{{{y^2}-2xy+3{x^2}}}{x^2}$的取值范圍為[2,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,曲線$\left\{\begin{array}{l}{x=\sqrt{2}cosφ}\\{y=\sqrt{2}sinφ}\end{array}\right.$(φ為參數(shù))上的兩點A,B對應(yīng)的參數(shù)分別為α,α+$\frac{π}{2}$.
(Ⅰ)求AB中點M的軌跡的普通方程;
(Ⅱ)求點(1,1)到直線AB距離的最大值.

查看答案和解析>>

同步練習(xí)冊答案