【題目】在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過(guò)對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來(lái)評(píng)價(jià)兩種心理暗示的作用.現(xiàn)有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.
(1)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率;
(2)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列.
【答案】(1);(2)分布列見(jiàn)解析
【解析】
(1)計(jì)算出接受甲種心理暗示的志愿者中包含A1但不包含B1的事件數(shù),計(jì)算出總的選擇方法數(shù),根據(jù)古典概型概率計(jì)算公式計(jì)算出所求概率.
(2)利用超幾何分布的概率計(jì)算方法,計(jì)算出的分布列.
(1)接受甲種心理暗示的志愿者中包含A1但不包含B1的事件數(shù)為,總的事件數(shù)為,所以接受甲種心理暗示的志愿者中包含A1但不包含B1的概率為.
(2)的所有可能取值為.
,,,,,故的分布列為:
0 | 1 | 2 | 3 | 4 | |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)求不等式的解集;
(2)若關(guān)于的不等式在實(shí)數(shù)范圍內(nèi)解集為空集,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時(shí)間,但小麥的發(fā)芽會(huì)受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計(jì)了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請(qǐng)根據(jù)統(tǒng)計(jì)的最后三組數(shù)據(jù),求出關(guān)于的線(xiàn)性回歸方程;
(2)若由(1)中的線(xiàn)性回歸方程得到的估計(jì)值與前兩組數(shù)據(jù)的實(shí)際值誤差均不超過(guò)兩顆,則認(rèn)為線(xiàn)性回歸方程是可靠的,試判斷(1)中得到的線(xiàn)性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當(dāng)發(fā)芽率為時(shí),平均每畝地的收益為元,某農(nóng)場(chǎng)有土地10萬(wàn)畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線(xiàn)性回歸方程估計(jì)該農(nóng)場(chǎng)種植小麥所獲得的收益.
附:在線(xiàn)性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,平面底面ABCD,是等邊三角形,底面ABCD為梯形,且,,.
Ⅰ證明:;
Ⅱ求A到平面PBD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)在拋物線(xiàn)上運(yùn)動(dòng),點(diǎn)在軸上的射影為,動(dòng)點(diǎn)滿(mǎn)足.
求動(dòng)點(diǎn)的軌跡的方程;
過(guò)點(diǎn)作互相垂直的直線(xiàn),,分別交曲線(xiàn)于點(diǎn),和,,記,的面積分別為,,問(wèn):是否為定值?若為定值,求出該定值;若不為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AC過(guò)定點(diǎn)F(2,0),且與直線(xiàn)x=-2相切,圓心C的軌跡為E,
(1)求圓心C的軌跡E的方程;
(2)若直線(xiàn)l交E與P,Q兩點(diǎn),且線(xiàn)段PQ的中心點(diǎn)坐標(biāo)(1,1),求|PQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,平面,底面為菱形,且有,,是線(xiàn)段上一點(diǎn),且與所成角的正弦值是.
(1)求的大。
(2)若與平面所成的角的正弦值是,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的中心在原點(diǎn),其左焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,過(guò)的直線(xiàn)與橢圓交于、兩點(diǎn),與拋物線(xiàn)交于、兩點(diǎn).當(dāng)直線(xiàn)與軸垂直時(shí),.
(1)求橢圓的方程;
(2)求的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com