【題目】某校100名學(xué)生其中考試語文成績的頻率分布直方圖所示,其中成績分組區(qū)間是:

.

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;

(3)若這100名學(xué)生語文某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,

求數(shù)學(xué)成績在之外的人數(shù).

【答案】(Ⅰ);(Ⅱ)73;(Ⅲ) .

【解析】【試題分析】(1)依據(jù)題設(shè)利用頻率之和為1建立方程分析求解;(2)依據(jù)題設(shè)中的頻率分布直方圖中提供的數(shù)據(jù),運用加權(quán)平均數(shù)公式求解;(3)依據(jù)題設(shè)條件及頻率分布表分析探求:

(Ⅰ)由頻率分布直方圖,可得,因此

(Ⅱ),所以這100名學(xué)生的語文成績的平均分為73分.

(Ⅲ) 分別求出語文成績在分?jǐn)?shù)段, , 的人數(shù)依次為。所以數(shù)學(xué)成績分?jǐn)?shù)段在, , 的人數(shù)依次為5,20,40,25.所以數(shù)學(xué)成績在之外的人數(shù)有人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,圓

1)過點的圓的切線只有一條,求的值及切線方程;

2)若過點且在兩坐標(biāo)軸上截距相等的直線被圓截得的弦長為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·全國卷Ⅲ文,18)某超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:

最高氣溫

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率.

(1)估計六月份這種酸奶一天的需求量不超過300瓶的概率;

(2)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元).當(dāng)六月份這種酸奶一天的進貨量為450瓶時,寫出Y的所有可能值,并估計Y大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)f(x)=ax(a>0,a≠1).
(1)若f(x)的圖象過點(1,2),求其解析式;
(2)若 ,且不等式g(x2+x)>g(3﹣x)成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓 的離心率,且橢圓上一點到點的距離的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè), 為拋物線 上一動點,過點作拋物線的切線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與圓外切,與圓內(nèi)切.

(Ⅰ)試求動圓圓心的軌跡的方程;

(Ⅱ)與圓相切的直線與軌跡交于兩點,若直線的斜率成等比數(shù)列,試求直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)已知一個圓過直線與圓的兩個交點,且面積最小,求此圓的方程;

(2)拋物線的頂點在原點,以橢圓的右焦點為焦點,過點的直線與拋物線有且僅有一個公共點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】莫數(shù)學(xué)建模興趣小組測量某移動信號塔的高度(單位: ),如圖所示,垂直放置的標(biāo)桿的高度,仰角 .

(Ⅰ)該小組已經(jīng)測得一組的值, , ,請推測的值;

(Ⅱ)該小組對測得的多組數(shù)據(jù)分析后,發(fā)現(xiàn)適當(dāng)調(diào)節(jié)標(biāo)桿到信號塔的距離(單位: ),使得較大時,可以提高信號塔測量的精確度,若信號塔高度為,試問為多大時, 最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,
(1)求實數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù);
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達(dá)式并判斷其奇偶性.

查看答案和解析>>

同步練習(xí)冊答案