方程sinx=
t
2
在[
π
2
,
4
]上有解,則實(shí)數(shù)t的取值范圍( 。
A、[-
2
,
2
]
B、[-
2
,1]
C、[-
2
2
,1]
D、[-
2
,2]
考點(diǎn):正弦函數(shù)的圖象
專(zhuān)題:計(jì)算題
分析:方程sinx=
t
2
在[
π
2
,
4
]上有解,即可求出sinx的取值范圍,進(jìn)一步即可確定實(shí)數(shù)t的取值范圍.
解答: 解:方程sinx=
t
2
在[
π
2
4
]上有解,
∴x∈[
π
2
4
],可得-
2
2
≤sinx≤1,
∴-
2
2
t
2
≤1,即
2
≤t≤2.
故答案為:D.
點(diǎn)評(píng):本題主要考察正弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(4)=5,且f(x)在R上的導(dǎo)數(shù)滿足f′(x)-1<0,則不等式f(x2)<x2+1的解集為(  )
A、(-∞,-2)∪(2,+∞)
B、(2,+∞)
C、(2,+∞)
D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某一隨機(jī)變量ξ的概率分布列如下,則b的值為(  )
ξ4a9
p0.50.1b
A、0.6B、0.5
C、0.4D、0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,將平面直角坐標(biāo)系中的格點(diǎn)(橫、縱坐標(biāo)均為整 數(shù)的點(diǎn))按如  下規(guī)則標(biāo)上數(shù)字標(biāo)簽:原點(diǎn)(0,0)處標(biāo)0,點(diǎn)(1,0)處標(biāo)1,點(diǎn)(1,-1)處標(biāo)2,點(diǎn)(0,-1)處標(biāo)3,點(diǎn)(-1,-1)處標(biāo)4,點(diǎn)(-1,0)處標(biāo)5,…,依此類(lèi)推,則標(biāo)簽2012×2013對(duì)應(yīng)的格點(diǎn)的坐標(biāo) 為(  )
A、(-1006,1006)
B、(1005,-1006)
C、(1005,1006)
D、(1006,1006)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)<0,且g(-2)=0,則不等式f(x)g(x)>0的解集是( 。
A、(-2,0)∪(2,+∞)
B、(-∞,-2)∪(2,+∞)
C、(-∞,-2)∪(0,2)
D、(-2,0)∪(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的首項(xiàng)為11,{bn}為等差數(shù)列且bn=an+1-an(n∈N*),若則b3=-2,b10=12,則a8=( 。
A、0B、3C、8D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=lnx,則f(x)的導(dǎo)數(shù)為f′(x),則f′(1)的值為( 。
A、eB、0C、1D、ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列周期為
π
2
的函數(shù)為(  )
A、y=sin(2x+
π
6
B、y=2tan(x+
π
7
C、y=cos3x
D、y=tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠生產(chǎn)的洗衣機(jī)在東南亞銷(xiāo)量不錯(cuò),原計(jì)劃今年一季度產(chǎn)量逐月增長(zhǎng)量相同.但實(shí)際情況一月份恰好完成計(jì)劃,二月份多生產(chǎn)了10臺(tái),三月份多生產(chǎn)了25臺(tái),結(jié)果造成一季度逐月產(chǎn)量增長(zhǎng)率相同.且第三月產(chǎn)量比原計(jì)劃整個(gè)一季度的產(chǎn)量的一半少10臺(tái).問(wèn)原計(jì)劃一季度生產(chǎn)多少臺(tái)洗衣機(jī),而實(shí)際生產(chǎn)了多少臺(tái)?

查看答案和解析>>

同步練習(xí)冊(cè)答案