某廠生產(chǎn)的洗衣機(jī)在東南亞銷量不錯,原計(jì)劃今年一季度產(chǎn)量逐月增長量相同.但實(shí)際情況一月份恰好完成計(jì)劃,二月份多生產(chǎn)了10臺,三月份多生產(chǎn)了25臺,結(jié)果造成一季度逐月產(chǎn)量增長率相同.且第三月產(chǎn)量比原計(jì)劃整個一季度的產(chǎn)量的一半少10臺.問原計(jì)劃一季度生產(chǎn)多少臺洗衣機(jī),而實(shí)際生產(chǎn)了多少臺?
考點(diǎn):函數(shù)模型的選擇與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件設(shè)出相應(yīng)的數(shù)量,建立條件關(guān)系即可得到結(jié)論.
解答: 解:設(shè)原計(jì)劃一季度月生產(chǎn)的臺數(shù)是a-d,a,a+d,(a>d>0),一季度共有3a,
而實(shí)際逐月生產(chǎn)的臺數(shù)為a-d,a+10,a+d+25,
(a-d)(a+d+25)=(a+10)2
a+d+25=
3a
2
-10

解得
a=90
d=10
,
即原計(jì)劃一季度生產(chǎn)270臺洗衣機(jī),實(shí)際生產(chǎn)了3a+35=305臺.
點(diǎn)評:本題主要考查函數(shù)的應(yīng)用問題,根據(jù)條件建立條件關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

方程sinx=
t
2
在[
π
2
,
4
]上有解,則實(shí)數(shù)t的取值范圍( 。
A、[-
2
,
2
]
B、[-
2
,1]
C、[-
2
2
,1]
D、[-
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺擬舉行由選手報(bào)名參加的比賽類型的娛樂節(jié)目,選手進(jìn)入正賽前需通過海選,參加海選的選手可以參加A、B、C三個測試項(xiàng)目,只需通過一項(xiàng)測試即可停止測試,通過海選.若通過海選的人數(shù)超過預(yù)定正賽參賽人數(shù),則優(yōu)先考慮參加海選測試次數(shù)少的選手進(jìn)入正賽.甲選手通過項(xiàng)目A、B、C測試的概率為分別為
1
5
、
1
3
1
2
,且通過各次測試的事件相互獨(dú)立.
(1)若甲選手先測試A項(xiàng)目,再測試B項(xiàng)目,后測試C項(xiàng)目,求他通過海選的概率;若改變測試順序,對他通過海選的概率是否有影響?說明理由;
(2)若甲選手按某種順序參加海選測試,第一項(xiàng)能通過的概率為p1,第二項(xiàng)能通過的概率為p2,第三項(xiàng)能通過的概率為p3,設(shè)他通過海選時參加測試的次數(shù)為ξ,求ξ的分布列和期望(用p1、p、p3表示);并說明甲選手按怎樣的測試順序更有利于他進(jìn)入正賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
sinxcosx+cos2x+a.
(Ⅰ)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)當(dāng)x∈[-
π
6
,
π
3
]時,函數(shù)f(x)的最大值與最小值的和為
3
2
,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=(1+2x28;        
(2)y=
1
1-x2
;
(3)y=sin 2x-cos 2x;      
(4)y=cos x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
cosωx•cos(
π
2
-ωx)(ω>0),且函數(shù)y=f(x)的圖象相鄰兩條對稱軸之間的距離為
π
2

(Ⅰ)求f(x)的對稱中心;
(Ⅱ)當(dāng)x∈[0,π]時,求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD中,AB=2,C=2
2
,CD=7;且∠B=45°,∠C=105°,
(1)求∠BAC;  
(2)求邊AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程2x2-(
3
+1)x+2m=0的兩根為sinθ和cos θ(θ∈(0,π)),求:
(1)m的值;
(2)
sinθ
1-cotθ
+
cosθ
1-tanθ
的值(其中cot θ=
1
tanθ
 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x3-
1
2
x2-2x+5.
(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)當(dāng)x∈[-1,2]時,f(x)<m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案