設(shè)x>0,則“a≥1”是“x+
a
x
≥2恒成立”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專(zhuān)題:簡(jiǎn)易邏輯
分析:先求命題“對(duì)任意的正數(shù)x,不等式x+
a
x
≥2成立”的充要條件,再利用集合法判斷兩命題間的充分必要關(guān)系
解答: 解:∵x>0,若a≥1,則x+
a
x
≥2
a
≥2恒成立,
若x+
a
x
≥2恒成立,即x2-2x+a≥0恒成立,
設(shè)f(x)=x2-2x+a,則△=(-2)2-4a≤0,或
=(-2)2-4a≥0
f(0)=a>0
,解得:a≥1,
故“a≥1”是“x+
a
x
≥2恒成立的充分必要條件,
故選:C.
點(diǎn)評(píng):本題考查了命題充要條件的判斷方法,求命題充要條件的方法,不等式恒成立問(wèn)題的解法,轉(zhuǎn)化化歸的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,已知
cosB
cosC
=
b
4a-c

(1)求cosB的值;
(2)若b=4,a-c=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,設(shè)M是△A1BD內(nèi)任一點(diǎn)(不包括邊界),定義f(M)=(m,n,p),其中m,n,p分別是點(diǎn)M到平面ADD1A1,平面ABB1A1,平面ABCD的距離,若f(M)=(
1
2
,x,y),且ax+y-18xy≥0恒成立,則實(shí)數(shù)a的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=
π
0
3
cosx-sinx)dx,則二項(xiàng)式(x2-
a
x
6展開(kāi)式中的常數(shù)項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)半徑為3的圓C被直線l:x+y-4=0截得的弦AB的中點(diǎn)為P(3,1)且弦長(zhǎng)|AB|=2
7
求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-cosx,對(duì)于[-
π
2
,
π
2
]上的任意x1,x2,有如下條件:①|(zhì)x1|>|x2|;②x
 
2
1
>x
 
2
2

③cosx1>cosx2;④sinx1>sinx2.其中能使f(x1)>f(x2)恒成立的條件序號(hào)是(  )
A、①②③B、①②
C、①②④D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)α1=-570°,α2=750°,β1=
5
β2=-
π
3

(1)將α1,α2用弧度制表示出來(lái)并指出它們各自的終邊所在的象限;
(2)將β1,β2用角度制表示出來(lái),并在-720°~0°范圍內(nèi)找出它們終邊相同的所有角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sinα=3cosα,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+1,點(diǎn)(n+1,
an+1
an
)(n∈N+)在y=f-1(x)上,且a1=a2=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Sn=
a1
2!
+
a2
3!
+…+
an
(n+1)!
,若Sn>m恒成立,求常數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案