10.已知函數(shù)f(x)=ax(a>0且a≠1)的圖象經(jīng)過點(2,$\frac{1}{9}$).
(1)比較f(2)與f(b2+2)的大。
(2)求函數(shù)g(x)=a${\;}^{{x}^{2}-2x}$(x≥0)的值域.

分析 (1)求出a的值,根據(jù)函數(shù)的單調(diào)性比較函數(shù)值的大小即可;(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的值域即可.

解答 解:(1)由已知得:a2=$\frac{1}{9}$,解得:a=$\frac{1}{3}$,
∵f(x)=${(\frac{1}{3})}^{x}$在R遞減,則2≤b2+2,
∴f(2)≥f(b2+2);
(2)∵x≥0,∴x2-2x≥-1,
∴${(\frac{1}{3})}^{{x}^{2}-2x}$≤3,
故g(x)的值域是(0,3].

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查指數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)p:x<3,q:-1<x<2,則p是q成立的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)F1、F2分別是橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦點,P為橢圓上任一點,點M的坐標(biāo)為(3,1),則|PM|+|PF1|的最大值為11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,建立平面直角坐標(biāo)系xoy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標(biāo)原點.已知炮彈發(fā)射后的軌跡在方程y=kx-$\frac{1}{20}$(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標(biāo).
(1)若k=2,求炮的射程;
(2)求炮的最大射程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,為了得到g(x)=sinωx的圖象,則只要將f(x)的圖象( 。
A.向左平移$\frac{π}{3}$個單位長度B.向右平移$\frac{π}{3}$個單位長度
C.向右平移$\frac{π}{6}$個單位長度D.向左平移$\frac{π}{6}$個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△OAB中,C是線段AB上一點,且CB=2AC,設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\frac{5}{{x}^{2}}$-3x2+2,則使得f(1)>f(log3x)成立的x取值范圍為0<x<3或x>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-$\frac{1}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)若bn=$lo{g}_{\frac{1}{2}}{{a}_{n}}^{2}$,求數(shù)列{$\frac{_{n}}{{a}_{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x∈R,sinx>1,則( 。
A.?p:?x∈R,sinx≤1B.?p:?x∈R,sinx≤1C.?p:?x∈R,sinx≤1D.?p:?x∈R,sinx>1

查看答案和解析>>

同步練習(xí)冊答案