分析 把已知的等式左邊利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值化簡,得到關于tanα的方程,求出方程的解得出tanα的值,利用同角三角函數(shù)關系對$\frac{sin2α}{sin2a+co{s}^{2}α}$進行變形并代入求值即可.
解答 解:由tan(α+$\frac{π}{4}$)=2得到:
tan(α+$\frac{π}{4}$)=$\frac{tanα+tan\frac{π}{4}}{1-tanαtan\frac{π}{4}}$=$\frac{1+tanα}{1-tanα}$=2,
解得tanα=$\frac{1}{3}$.
所以$\frac{sin2α}{sin2a+co{s}^{2}α}$=$\frac{2sinαcosα}{2sinαcosα+co{s}^{2}α}$=$\frac{2tanα}{2tanα+1}$=$\frac{2×\frac{1}{3}}{2×\frac{1}{3}+1}$=$\frac{2}{5}$.
故答案是:$\frac{2}{5}$.
點評 此題考查了同角三角函數(shù)間的基本關系,兩角和與差的正切函數(shù)公式,熟練掌握公式是解本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x+2y-5=0 | B. | 2x-y+5=0 | C. | x-2y+5=0 | D. | 2x+y-5=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com