2.已知tan(α+$\frac{π}{4}$)=2,則$\frac{sin2α}{sin2a+co{s}^{2}α}$=$\frac{2}{5}$.

分析 把已知的等式左邊利用兩角和與差的正切函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn),得到關(guān)于tanα的方程,求出方程的解得出tanα的值,利用同角三角函數(shù)關(guān)系對(duì)$\frac{sin2α}{sin2a+co{s}^{2}α}$進(jìn)行變形并代入求值即可.

解答 解:由tan(α+$\frac{π}{4}$)=2得到:
tan(α+$\frac{π}{4}$)=$\frac{tanα+tan\frac{π}{4}}{1-tanαtan\frac{π}{4}}$=$\frac{1+tanα}{1-tanα}$=2,
解得tanα=$\frac{1}{3}$.
所以$\frac{sin2α}{sin2a+co{s}^{2}α}$=$\frac{2sinαcosα}{2sinαcosα+co{s}^{2}α}$=$\frac{2tanα}{2tanα+1}$=$\frac{2×\frac{1}{3}}{2×\frac{1}{3}+1}$=$\frac{2}{5}$.
故答案是:$\frac{2}{5}$.

點(diǎn)評(píng) 此題考查了同角三角函數(shù)間的基本關(guān)系,兩角和與差的正切函數(shù)公式,熟練掌握公式是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)a=2-3,b=log35,c=cos100°,則(  )
A.a>b>cB.b>a>cC.a>c>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.p:若(x-1)(y+2)=0,則x=1或y=-2則p的逆否命題是真命題,¬p是假命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓M:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,一個(gè)焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為3,過(guò)點(diǎn)A(0,2)且斜率為k (k>0)的直線l與橢圓有且只有一個(gè)公共點(diǎn),l與x軸交于點(diǎn)B.
(1)求橢圓M的方程和直線l的方程;
(2)圓N的圓心在x軸上,且與直線l相切于點(diǎn)A,試在圓N上求一點(diǎn)P,使 PB=3PA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知P(-1,2),過(guò)P點(diǎn)且與原點(diǎn)距離最大的直線的方程是( 。
A.x+2y-5=0B.2x-y+5=0C.x-2y+5=0D.2x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)Sn,Tn分別是等差數(shù)列{an},{bn}的前n項(xiàng)和,若a5=2b5,則$\frac{S_9}{T_9}$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=x-alnx,(a∈R).
(1)當(dāng)a=2時(shí),求曲線f(x)在x=1處的切線方程;
(2)設(shè)函數(shù)$h(x)=f(x)+\frac{1+a}{x}$,求函數(shù)h(x)的單調(diào)區(qū)間;
(3)若$g(x)=-\frac{1+a}{x}$,在[1,e](e=2.71828…)上存在一點(diǎn)x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$的奇偶性為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,扇形AOB所在圓的半徑是1,弧AB的中點(diǎn)為C,動(dòng)點(diǎn)M,N分別在OA,OB上運(yùn)動(dòng),且滿足OM=BN,∠AOB=120°.
(Ⅰ)設(shè)$\overrightarrow{OA}=a,\overrightarrow{OB}=b$,若$\overrightarrow{OM}=\frac{3}{4}\overrightarrow{OA}$,用a,b表示$\overrightarrow{CM},\overrightarrow{CN}$;
(Ⅱ)求$\overrightarrow{CM}•\overrightarrow{CN}$的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案