10.已知橢圓M:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{2}$,一個焦點到相應準線的距離為3,過點A(0,2)且斜率為k (k>0)的直線l與橢圓有且只有一個公共點,l與x軸交于點B.
(1)求橢圓M的方程和直線l的方程;
(2)圓N的圓心在x軸上,且與直線l相切于點A,試在圓N上求一點P,使 PB=3PA.

分析 (1)由題意列關于a,c的方程組,求解得a,c的值,由隱含條件求得b,則橢圓方程可求.設出直線方程,與橢圓方程聯(lián)立,化為關于x的一元二次方程,由判別式等于0求得k,則直線l的方程可求;
(2)求出圓N的方程,設出P的坐標,由PB=3PA求得P的軌跡,聯(lián)立兩圓的方程可得P的坐標.

解答 解:(1)由題意有$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{{a}^{2}}{c}-c=3}\end{array}\right.$,解得a=2,c=1,
從而b=$\sqrt{3}$,
∴橢圓的標準方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
由題意可得,直線l的方程為y=kx+2(k>0),
聯(lián)立$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得(3+4k2)x2+16kx+4=0.
由△=256k2-16(3+4k2)=0,解得k=$\frac{1}{2}$(k>0).
∴直線l的方程為y=$\frac{1}{2}x+2$,即x-2y+4=0;
(2)如圖,設圓N的圓心為(m,0),
由題意可得,${k}_{AN}=-\frac{2}{m}=-2$,得m=1.
則半徑r=$\sqrt{5}$,
∴圓N的方程為(x-1)2+y2=5.①
設P(x,y),則由 PB=3PA,得$\sqrt{(x+4)^{2}+{y}^{2}}=3\sqrt{{x}^{2}+(y-2)^{2}}$,
化簡得:2x2+2y2-2x-9y+5=0.②
聯(lián)立①②解得:P($\frac{11-18\sqrt{2}}{17},\frac{27-4\sqrt{2}}{17}$)或P($\frac{11+18\sqrt{2}}{17},\frac{27+4\sqrt{2}}{17}$).

點評 本題主要考查了直線與橢圓方程.考查直線與圓錐曲線的位置關系,考查學生分析解決問題的能力,考查計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在圓錐PO中,已知PO=$\sqrt{2}$,⊙O 的直徑AB=2,C是弧$\widehat{AB}$的中點,D為AC的中點.
(1)證明:AC⊥平面POD;
(2)求二面角B-PA-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某企業(yè)為解決困難職工的住房問題,決定分批建設保障性住房供給困難職工,首批計劃用100萬元購買一塊土地,該土地可以建造每層1000平方米的樓房一幢,樓房的每平方米建筑費用與建筑高度有關,樓房每升高一層,整層樓每平方米建筑費用提高20元,已知建筑第1層樓房時,每平方米的建筑費用為920元.為了使該幢樓房每平方米的平均費用最低(費用包括建筑費用和購地費用),應把樓房建成幾層?此時平均費用為每平方米多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的體積為$\frac{243}{16}π$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.求函數(shù)f(x)=$\sqrt{6sin(x+\frac{π}{6})-3\sqrt{2}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.直線l:x+$\sqrt{3}$y+6=0,則直線的傾斜角α等于(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知tan(α+$\frac{π}{4}$)=2,則$\frac{sin2α}{sin2a+co{s}^{2}α}$=$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)y=sin2x-$\sqrt{3}$cos2x的圖象的一條對稱軸方程為( 。
A.x=$\frac{π}{12}$B.x=-$\frac{π}{12}$C.x=$\frac{π}{6}$D.x=-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知集合A={x|2≤x≤6},B={x|2a≤x≤a+3}
(1)當a=2時,求A∪B
(2)當B⊆A時,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案