1.已知集合∁RM={x|lnx<e},$N=\{y|y=\frac{1}{x}(x>0)\}$,則M∩N=( 。
A.(0,e)B.[e,eeC.[ee,+∞)D.(e,+∞)

分析 求解對數(shù)型函數(shù)化簡集合M,求出集合N的值域,然后直接利用交集運算求解.

解答 解:集合∁RM={x|lnx<e}=(0,ee),
∴M=(-∞,0]∪[ee,+∞),
$N=\{y|y=\frac{1}{x}(x>0)\}$=(0,+∞),
∴M∩N=[ee,+∞),
故選:C.

點評 本題考查了交集及其運算,考查了對數(shù)函數(shù)的性質(zhì)和函數(shù)的值域,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.不等式$\frac{4}{x-2}>x-2$的解集是(  )
A.(-∞,0)∪(2,4)B.[0,2)∪[4,+∞)C.[2,4)D.(-∞,-2]∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.“x=1”是“x2-1=0”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知f(x)=m(x-3m)(x+m+3),g(x)=2x-4.若同時滿足條件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0,
則m的取值范圍是(-5,-$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)$y=\sqrt{1-{{(x-1)}^2}},x∈[1,2]$,對于滿足1<x1<x2<2的任意x1,x2,給出下列結(jié)論:
①f(x2)-f(x1)>x2-x1;            ②x2f(x1)>x1f(x2);
③(x2-x1)[f(x2)-f(x1)]<0;      ④(x2-x1)[f(x2)-f(x1)]>0
其中正確結(jié)論有②③(寫上所有正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)y=ax-2(a>0,且a≠1)的圖象恒過定點P,P在冪函數(shù)f(x)的圖象上,則f(x)=x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.計算:
(1)${(2\frac{3}{5})^0}+{2^{-4}}×{(2\frac{1}{4})^{-\frac{3}{2}}}-{0.01^{0.5}}$;
(2)(lg2)2+lg2•lg50+lg25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)a,b∈R,則“a=0”是“ab=0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知點(x,y)在映射f:A→B作用下的象是(x+y,x-y),x∈R,y∈R,則點(8,2)的原象
是(5,3).

查看答案和解析>>

同步練習冊答案