6.函數(shù)y=ax-2(a>0,且a≠1)的圖象恒過定點P,P在冪函數(shù)f(x)的圖象上,則f(x)=x0

分析 求出定點P,然后求解冪函數(shù)的解析式即可.

解答 解:由指數(shù)函數(shù)的性質(zhì)可知函數(shù)y=ax-2(a>0,且a≠1)的圖象恒過定點P(2,1),
設冪函數(shù)為:f(x)=xa.P在冪函數(shù)f(x)的圖象上,
可得:2a=1,a=0,
可得f(x)=x0
故答案為:x0

點評 本題考查指數(shù)函數(shù)與冪函數(shù)的性質(zhì)的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}是遞增數(shù)列,且滿足a3•a5=16,a2+a6=10.
(Ⅰ)若{an}是等差數(shù)列,求數(shù)列{an}的通項公式及前n項和Sn;
(Ⅱ)若{an}是等比數(shù)列,若bn=$\sqrt{a_n}$,求數(shù)列{bn}的前7項的積T7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=ax3+x+1的圖象在點(1,f(1))的處的切線過點(3,7).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求f(-4)+f(-3)+…+f(3)+f(4)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知直線l過點P(1,-2),且在x軸和y軸上的截距互為相反數(shù),則直線l的方程為( 。
A.x-y-3=0B.x+y+1=0或2x+y=0
C.x-y-3=0或2x+y=0D.x+y+1=0或x-y-3=0或2x+y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合∁RM={x|lnx<e},$N=\{y|y=\frac{1}{x}(x>0)\}$,則M∩N=( 。
A.(0,e)B.[e,eeC.[ee,+∞)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設全集為R,集合A={x|x<5},B={x|x≤3},則∁RA與∁RB的并集是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=x2+2ax+2,x∈[-4,3].
(1)當a=-1時,求函數(shù)f(x)的最大值和最小值
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[-4,3]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知a=0.2-0.2,b=log0.52,c=$\frac{\root{3}{2}}{2}$,則a,b,c的大小關系正確的是(  )
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列各函數(shù)中,圖象完全相同的是( 。
A.y=2lgx和y=lgx2B.y=$\frac{|x-1|}{x-1}$和y=$\left\{\begin{array}{l}{-1,x∈(-∞,1)}\\{1,x∈(1,+∞)}\end{array}\right.$
C.y=$\frac{{x}^{2}}{x}$和y=xD.y=x-3和y=$\sqrt{(x-3)^{2}}$

查看答案和解析>>

同步練習冊答案