【題目】為了解某中學學生對數(shù)學學習的情況,從該校抽了名學生,分析了這名學生某次數(shù)學考試成績(單位:分),得到了如下的頻率分布直方圖:
(1)求頻率分布直方圖中的值;
(2)根據(jù)頻率分布直方圖估計該組數(shù)據(jù)的中位數(shù)(精確到);
(3)在這名學生的數(shù)學成績中,從成績在的學生中任選人,求次人的成績都在中的概率.
【答案】(1)(2)7.7(3)
【解析】
(1)由直方圖知,由此能求出;
(2)由頻率分布直方圖中的中位數(shù)為頻率為0.5對應(yīng)的橫坐標,即可能估計高二數(shù)學成績的中位數(shù);
(3)記成績落在,中的2人為,,成績落在,中的3人為,,,從成績在,的學生中任選2人,利用列舉法能求出2人的成績都在,中的概率.
(1)由直方圖可得:,解得:.
(2)該組數(shù)據(jù)的中位數(shù):.
(3)成績在有人,記為,,成績在有人,記為,,
設(shè)事件為“人的成績都在中”,所有的基本事件為:
,,,,,,,,,共種,
滿足條件的基本事件為:,,共3種
,故人的成績都在中的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】定義在D上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界已知函數(shù)
當,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,且橢圓上一點的坐標為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點,且以線段為直徑的圓過橢圓的右頂點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某集團公司為了加強企業(yè)管理,樹立企業(yè)形象,考慮在公司內(nèi)部對遲到現(xiàn)象進行處罰.現(xiàn)在員工中隨機抽取200人進行調(diào)查,當不處罰時,有80人會遲到,處罰時,得到如下數(shù)據(jù):
處罰金額(單位:元) | 50 | 100 | 150 | 200 |
遲到的人數(shù) | 50 | 40 | 20 | 0 |
若用表中數(shù)據(jù)所得頻率代替概率.
(Ⅰ)當處罰金定為100元時,員工遲到的概率會比不進行處罰時降低多少?
(Ⅱ)將選取的200人中會遲到的員工分為,兩類:類員工在罰金不超過100元時就會改正行為;類是其他員工.現(xiàn)對類與類員工按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類員工的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的長軸長是短軸長的2倍,左焦點為.
(1)求C的方程;
(2)設(shè)C的右頂點為A,不過C左、右頂點的直線l:與C相交于M,N兩點,且.請問:直線l是否過定點?如果過定點,求出該定點的坐標;如果不過定點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com