等差數(shù)列{an}的前n項(xiàng)和為Sn,已知(a2-1)3+2011(a2-1)=
3
2
,(a2010-1)3+2011(a2010-1)=-
3
2
,則S2011等于( 。
A、0
B、2011
C、4022
D、2011
3
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:兩個(gè)等式相加,然后因式分解,提取公因式得到a2+a2010的值,利用等差數(shù)列的性質(zhì)及數(shù)列的前n項(xiàng)和公式可得.
解答: 解:已知兩式相加可得(a2-1)3+2011(a2-1)+(a2010-1)3+2011(a2010-1)=0,
整理可得(a2-1+a2010-1)[(a2-1)2-(a2-1)(a2010-1)+(a2010-1)2]+2011(a2-1+a2010-1)=0,
∴a2-1+a2010-1=0,即a2+a2010=2,
∵{an}為等差數(shù)列,前n項(xiàng)和為Sn
∴S2011=
2011(a1+a2011)
2
=
2011(a2+a2010)
2
=2011
故選:B.
點(diǎn)評(píng):本題主查等差數(shù)列的前n項(xiàng)和,求出a2+a2010=2是解決本題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象,如果A>0,ω>0,0<φ<π,則此函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,O為平面內(nèi)一點(diǎn),且設(shè)
OA
=
a
,
OB
=
b
,
OC
=
c
,則滿足條件(
a
+
b
)•
AB
=(
b
+
c
)•
BC
=(
c
+
a
)•
CA
時(shí),O是△ABC的(  )
A、內(nèi)心B、外心C、垂心D、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin2x的圖象的一個(gè)對(duì)稱中心是( 。
A、(
π
2
,2)
B、(
π
4
,0)
C、(
π
4
,2)
D、(
π
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=loga(2x-3)+2的圖象恒過定點(diǎn)P,P在指數(shù)函數(shù)f(x)的圖象上,則f(-1)的值為(  )
A、
2
B、
2
2
C、-
2
D、-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高三年級(jí)有5個(gè)班級(jí)參加學(xué)校運(yùn)動(dòng)會(huì)100米跑決賽,共有5個(gè)跑道,若在安排比賽賽道時(shí)不將甲班安排在第一及第二賽道上,且甲班和乙班不相鄰,則不同的安排方法有( 。
A、24種B、30種
C、36種D、42種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
0
(et-e-t)dt,則不等式f(loga2)+f(loga
1
2
)≤2f(1)的解集為( 。
A、(0,
1
2
]
B、[2,+∞)
C、[
1
2
,2]
D、(0,
1
2
]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=ax(a>0,a≠1),且f(log0.54)=-3,則a的值為( 。
A、
3
B、3
C、9
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)實(shí)數(shù)t>0,求證:(1+
2
t
)ln(1+t)>2
(2)從編號(hào)1到100的100張卡片中,每次隨機(jī)地抽取一張,然后放回,用這種方式連續(xù)抽20次,設(shè)抽得的20個(gè)號(hào)碼各不相同的概率為p,求證:ρ<
1
e2

查看答案和解析>>

同步練習(xí)冊(cè)答案