【題目】已知平面內(nèi)圓心為的圓的方程為,點是圓上的動點,點是平面內(nèi)任意一點,若線段的垂直平分線交直線于點,則點的軌跡可能是_________.(請將下列符合條件的序號都填入橫線上)
①橢圓;②雙曲線;③拋物線;④圓;⑤直線;⑥一個點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點P(1,2)引直線,使A(2,3),B(4,-5)到它的距離相等,則這條直線的方程為 ( )
A. 4x+y-6=0
B. x+4y-6=0
C. 2x+3y-7=0或x+4y-6=0
D. 3x+2y-7=0或4x+y-6=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線 ﹣ =1(a>0,b>0)的左、右焦點分別為F1 , F2 , P為雙曲線上一點,且 =0,△F1PF2的內(nèi)切圓半徑r=2a,則雙曲線的離心率e= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線與雙曲線交于A,B兩點,且點A的橫坐標(biāo)為4.
(1)求的值及B點坐標(biāo);
(2)結(jié)合圖形,直接寫出一次函數(shù)的函數(shù)值大于反比例函數(shù)的函數(shù)值時x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a是從集合{1,2,3,4}中隨機取出的一個數(shù),b是從集合{1,2,3}中隨機取出的一個數(shù),構(gòu)成一個基本事件(a,b)。記“在這些基本事件中,滿足logba≥1為事件A,則A發(fā)生的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=cos2x﹣ sin2x,把y=f(x)的圖象向左平移φ(φ>0)個單位后,恰好得到函數(shù)g(x)=﹣cos2x﹣ sin2x的圖象,則φ的值可以為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax2+bx+c(a>0),
(1)當(dāng)a=1,b=2,若|f(x)|﹣2=0有且只有兩個不同的實根,求實數(shù)c的取值范圍;
(2)設(shè)方程f(x)=x的兩個實根為x1 , x2 , 且滿足0<t<x1 , x2﹣x1> ,試判斷f(t)與x1的大小,并給出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地環(huán)保部門跟蹤調(diào)查一種有害昆蟲的數(shù)量.根據(jù)調(diào)查數(shù)據(jù),該昆蟲的數(shù)量(萬只)與時間(年)(其中)的關(guān)系為.為有效控制有害昆蟲數(shù)量、保護生態(tài)環(huán)境,環(huán)保部門通過實時監(jiān)控比值(其中為常數(shù),且)來進行生態(tài)環(huán)境分析.
(1)當(dāng)時,求比值取最小值時的值;
(2)經(jīng)過調(diào)查,環(huán)保部門發(fā)現(xiàn):當(dāng)比值不超過時不需要進行環(huán)境防護.為確保恰好3年不需要進行保護,求實數(shù)的取值范圍.(為自然對數(shù)的底, )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com