【題目】在四棱錐中,是等邊三角形,點(diǎn)在棱上,平面平面

1)求證:平面平面

2)若,求直線與平面所成角的正弦值的最大值;

3)設(shè)直線與平面相交于點(diǎn),若,求的值.

【答案】1)證明見解析(23

【解析】

(1)取中點(diǎn)為,連接,由等邊三角形性質(zhì)可得,再由面面垂直的性質(zhì)可得,根據(jù)平行直線的性質(zhì)可得,進(jìn)而求證;

2)以為原點(diǎn),過的平行線,分別以,,分別為,,軸建立空間直角坐標(biāo)系,設(shè),由點(diǎn)在棱上,可設(shè),即可得到,再求得平面的法向量,進(jìn)而利用數(shù)量積求解;

3)設(shè),,,求得,,即可求得點(diǎn)的坐標(biāo),再由與平面的法向量垂直,進(jìn)而求解.

1)證明:取中點(diǎn)為,連接,

因?yàn)?/span>是等邊三角形,所以,

因?yàn)?/span>且相交于,所以平面,所以,

因?yàn)?/span>,所以,

因?yàn)?/span>,在平面內(nèi),所以,

所以.

2)以為原點(diǎn),過的平行線,分別以,,分別為,,軸建立空間直角坐標(biāo)系,設(shè),則,,,,

因?yàn)?/span>在棱上,可設(shè),

所以,

設(shè)平面的法向量為,因?yàn)?/span>,

所以,即,,可得,即,

設(shè)直線與平面所成角為,所以,

可知當(dāng)時(shí),取最大值.

3)設(shè),則有,得,

設(shè),那么,所以,

所以.

因?yàn)?/span>,

,

所以.

又因?yàn)?/span>,所以,

,設(shè)平面的法向量為,

,即,,可得,即

因?yàn)?/span>在平面內(nèi),所以,所以,

所以,即,

所以或者(舍),即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為奇函數(shù),且的極小值為.為函數(shù)的導(dǎo)函數(shù).

1)求的值;

2)若關(guān)于的方程有三個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為m為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

1)求曲線C和直線的直角坐標(biāo)系方程;

2)已知直線與曲線C相交于A,B兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)向左平移個(gè)單位,得到的圖象,則滿足(

A.圖象關(guān)于點(diǎn)對(duì)稱,在區(qū)間上為增函數(shù)

B.函數(shù)最大值為2,圖象關(guān)于點(diǎn)對(duì)稱

C.圖象關(guān)于直線對(duì)稱,在上的最小值為1

D.最小正周期為,有兩個(gè)根

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),設(shè),的兩個(gè)不同極值點(diǎn),證明:;

2)設(shè),的兩個(gè)不同零點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)若曲線在點(diǎn)處的切線方程為,求;

2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,部分對(duì)應(yīng)值如下表:

0

4

5

1

2

2

1

的導(dǎo)函數(shù)的圖象如圖所示,關(guān)于的命題正確的是(

A.函數(shù)是周期函數(shù)

B.函數(shù)上是減函數(shù)

C.函數(shù)的零點(diǎn)個(gè)數(shù)可能為0,1,23,4

D.當(dāng)時(shí),函數(shù) 4個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】月,第二屆“一帶一路”國(guó)際合作高峰論壇在北京成功舉辦.“一帶一路”是由中國(guó)倡議,積極發(fā)展中國(guó)與沿線國(guó)家經(jīng)濟(jì)合作伙伴關(guān)系的區(qū)域合作平臺(tái),共同打造政治互信、經(jīng)濟(jì)融合、文化包容的利益、命運(yùn)和責(zé)任共同體.深受有關(guān)國(guó)家的積極響應(yīng).某公司搭乘這班快車,計(jì)劃對(duì)沿線甲、乙、丙三個(gè)國(guó)進(jìn)行投資,其中選擇一國(guó)投資兩次,其余兩國(guó)各投資一次.共四次投資.每次投資,公司設(shè)置投資金額共有、、(億元)四個(gè)檔次,其中檔投資至多為一次,檔投資至少為一次,檔投資不能在同一國(guó)中被投兩次,則不同的投資方案(不考慮投資的先后順序)有(

A.B.C.D.以上答案均不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)組織了迎新杯知識(shí)競(jìng)賽,隨機(jī)抽取了120名考生的成績(jī)(單位:分),并按[95,105),[105,115),[115125),[125,135),[135145]分成5組,制成頻率分布直方圖,如圖所示.

1)若規(guī)定成績(jī)?cè)?/span>120分以上的為優(yōu)秀,估計(jì)樣本中成績(jī)優(yōu)秀的考生人數(shù);

2)求該中學(xué)這次知識(shí)競(jìng)賽成績(jī)的平均數(shù)與方差的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

同步練習(xí)冊(cè)答案