A. | [-2,0)∪(0,2) | B. | (-2,0)∪(0,2) | C. | (-2,0)∪(0,2] | D. | (-2,2) |
分析 函數(shù)y=$\frac{ln(x+2)}{\sqrt{2-x}}$+$\frac{1}{x}$有意義,可得$\left\{\begin{array}{l}{x+2>0}\\{2-x>0}\\{x≠0}\end{array}\right.$,解不等式即可得到所求定義域.
解答 解:函數(shù)y=$\frac{ln(x+2)}{\sqrt{2-x}}$+$\frac{1}{x}$有意義,
可得$\left\{\begin{array}{l}{x+2>0}\\{2-x>0}\\{x≠0}\end{array}\right.$,即$\left\{\begin{array}{l}{x>-2}\\{x<2}\\{x≠0}\end{array}\right.$,
即有-2<x<0或0<x<2.
定義域為(-2,0)∪(0,2).
故選:B.
點評 本題考查函數(shù)的定義域的求法,注意對數(shù)真數(shù)大于0,偶次根式被開方式非負(fù),分式分母不為0,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | c<b<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,+∞) | B. | (-1,+∞) | C. | (1,+∞) | D. | [-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com