【題目】如圖,矩形,為的中點,將沿直線翻折成,連接,為的中點,則在翻折過程中,下列說法中所有正確的是( )
A.存在某個位置,使得B.翻折過程中,的長是定值
C.若,則;D.若,當三棱錐的體積最大時,三棱錐的外接球的表面積是.
【答案】BD
【解析】
對于A,取的中點為,連接,設.通過證明平面平面,得.假設,得到,,這是不可能的,故不正確;對于B,在中,由余弦定理得是定值,故是定值,故正確;對于C,若,可證平面,得到,此時,由于,故不成立,故不正確;對于D,只有當平面平面時,三棱錐的體積最大,取的中點為,證明,故就是三棱錐的外接球的球心,故D正確.
對于A,取的中點為,連接,設,如圖所示
則平面平面,平面.
四邊形是平行四邊形,,同理可證平面.
又,且平面,平面平面.
平面,又平面,平面平面,
.
如果,則,由于,則,
由于三線共面且共點,這是不可能的,故不正確;
對于B,如圖,由等角定理可得,又,
在中,由余弦定理得:
是定值,是定值,故正確;
對于C,如圖所示
,即,設為中點,連接,則
若,由于,且平面,
平面,平面,
,則,
由于,故不成立,故不正確;
對于D,根據題意知,只有當平面平面時,
三棱錐的體積最大,取的中點為,為中點,
連接,如圖
,,平面平面
平面平面,平面
平面,又平面,.
又,,,,
,,
.
的中點就是三棱錐的外接球的球心,球的半徑為,
表面積是,故D正確;
故選:BD.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為以為極點,軸正半軸為極軸建立極坐標系,設點在曲線上,點在曲線上,且為正三角形.
(1)求點,的極坐標;
(2)若點為曲線上的動點,為線段的中點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產一種產品,從流水線上隨機抽取件產品,統(tǒng)計其質量指標值并繪制頻率分布直方圖(如圖1):規(guī)定產品的質量指標值在的為劣質品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產品的質量指標值位于各區(qū)間的頻率代替產品的質量指標值位于該區(qū)間的概率.
(1)求每件產品的平均銷售利潤;
(2)該企業(yè)主管部門為了解企業(yè)年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業(yè)近年的年營銷費用和年銷售量,數(shù)據做了初步處理,得到的散點圖(如圖2)及一些統(tǒng)計量的值.
表中,,,.
根據散點圖判斷,可以作為年銷售量(萬件)關于年營銷費用(萬元)的回歸方程.
①求關于的回歸方程;
②用所求的回歸方程估計該企業(yè)每年應投入多少營銷費,才能使得該企業(yè)的年收益的預報值達到最大?(收益銷售利潤營銷費用,取)
附:對于一組數(shù)據,,,,其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研課題組通過一款手機APP軟件,調查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表
周跑量(km/周) | |||||||||
人數(shù) | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補全該市1000名跑步愛好者周跑量的頻率分布直方圖:
注:請先用鉛筆畫,確定后再用黑色水筆描黑
(2)根據以上圖表數(shù)據計算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計該市跑步愛好者周跑量的分布特點
(3)根據跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價格(單位:元) | 2500 | 4000 | 4500 |
根據以上數(shù)據,估計該市每位跑步愛好者購買裝備,平均需要花費多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù),…是自然對數(shù)的底數(shù)),曲線在點處的切線與軸平行.
(1)求的值;
(2)求函數(shù)的單調區(qū)間;
(3)設,其中為的導函數(shù).證明:對任意,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.
(Ⅰ)求證:平面ADE⊥平面BDEF;
(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地自2014年至2019年每年年初統(tǒng)計所得的人口數(shù)量如表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
人數(shù)(單位:千人) | 2082 | 2135 | 2203 | 2276 | 2339 | 2385 |
(1)根據表中的數(shù)據判斷從2014年到2019年哪個跨年度的人口增長數(shù)量最大?并描述該地人口數(shù)量的變化趨勢;
(2)研究人員用函數(shù)擬合該地的人口數(shù)量,其中的單位是年,2014年年初對應時刻,的單位是千人,經計算可得,請解釋的實際意義.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省新課改后某校為預測2020屆高三畢業(yè)班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數(shù)和其中本科上線人數(shù),并將抽取數(shù)據制成下面的條形統(tǒng)計圖.
(1)根據條形統(tǒng)計圖,估計本屆高三學生本科上線率.
(2)已知該省甲市2020屆高考考生人數(shù)為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.
(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);
(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數(shù)乙市的均值不低于甲市,求p的取值范圍.
可能用到的參考數(shù)據:取,.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com