【題目】如圖,三棱錐P-ABC中,PA平面ABC,
(1)(Ⅰ)求三棱錐P-ABC的體積;
(2)(Ⅱ)證明:在線段PC上存在點(diǎn)M,使得ACBM,并求的值.
【答案】
(1)
(2)
【解析】(I)由題設(shè)AB=1,AC=2,,可得.由PA平面ABC,可知PA是三棱錐P-ABC的高,體積.
(II)證:在平面ABC內(nèi),過點(diǎn)B作BNAC,垂足為N,過N作MN//PA交PC于M,連接BM,由PA面ABC知PAAC,所以MNAC,由于BNMN=N,故AC面MBN,又BM面MBN,所以ACBM.
在直角BAN中,AN=AB,從而NC=AC-AN=,由MN//PA,得.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解向量語言表述線面的垂直、平行關(guān)系(要證明一條直線和一個(gè)平面平行,也可以在平面內(nèi)找一個(gè)向量與已知直線的方向向量是共線向量即可;設(shè)直線的方向向量是,平面內(nèi)的兩個(gè)相交向量分別為,若).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),評論g(x)的單調(diào)性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙、丙三個(gè)乒乓球協(xié)會的運(yùn)動員人數(shù)分別為27,9,18,先采用分層抽樣的方法從這三個(gè)協(xié)會中抽取6名運(yùn)動員參加比賽
(1)求應(yīng)從這三個(gè)協(xié)會中分別抽取的運(yùn)動員人數(shù)
(2)將抽取的6名運(yùn)動員進(jìn)行編號,編號分別為 ,從這6名運(yùn)動員中隨機(jī)抽取2名參加雙打比賽.(1)用所給編號列出所有可能的結(jié)果;(2)設(shè)為事件“編號為的兩名運(yùn)動員至少有一人被抽到”,求事件發(fā)生的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】全網(wǎng)傳播的融合指數(shù)是衡量電視媒體在中國網(wǎng)民中影響了的綜合指標(biāo).根據(jù)相關(guān)報(bào)道提供的全網(wǎng)傳播2015年某全國性大型活動的“省級衛(wèi)視新聞臺”融合指數(shù)的數(shù)據(jù),對名列前20名的“省級衛(wèi)視新聞臺”的融合指數(shù)進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示.求:(1)現(xiàn)從融合指數(shù)在[4,5)和[7,8]內(nèi)的“省級衛(wèi)視新聞臺”中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在[7,8]的概率;(2)根據(jù)分組統(tǒng)計(jì)表求這20家“省級衛(wèi)視新聞臺”的融合指數(shù)的平均數(shù).
組號 | 分組 | 頻數(shù) |
1 | [4,5) | 2 |
2 | [5,6) | 8 |
3 | [6,7) | 7 |
4 | [7,8] | 3 |
(1)現(xiàn)從融合指數(shù)在[4,5)和[7,8]內(nèi)的“省級衛(wèi)視新聞臺”中隨機(jī)抽取2家進(jìn)行調(diào)研,求至少有1家的融合指數(shù)在[7,8]的概率;
(2)根據(jù)分組統(tǒng)計(jì)表求這20家“省級衛(wèi)視新聞臺”的融合指數(shù)的平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,角所對的邊分別為,下列命題正確的是_____________.
①總存在某個(gè)內(nèi)角,使得;
②存在某鈍角,有;
③若,則的最小角小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐V-ABC中,平面VAB平面ABC,VAB為等比三角形,ACBC且AC=BC=,O,M分別為AB,VA的中點(diǎn)。
(I)求證:VB//平面MOC;
(II)求證:平面MOC平面VAB;
(III)求三棱錐V-ABC的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一直函數(shù),其中
(1)討論的單調(diào)性
(2)設(shè)曲線與軸正半軸的交點(diǎn)為,曲線在點(diǎn)處的切線方程為,求證:對于任意的正實(shí)數(shù),都有
(3)若關(guān)于的方程(為實(shí)數(shù))有兩個(gè)正實(shí)根,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 已知2件次品和3件正品放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機(jī)檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件次品或者檢測出3件正品時(shí)檢測結(jié)束.
(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(2)已知每檢測一件產(chǎn)品需要費(fèi)用100元,設(shè)X表示直到檢測出2件次品或者檢測出3件正品時(shí)所 需要的檢測費(fèi)用(單位:元),求X的分布列和均值(數(shù)學(xué)期望).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C: + =1,直線l: (t為參數(shù))
(1)寫出曲線C的參數(shù)方程,直線l的普通方程.
(2)過曲線C上任意一點(diǎn)P作與l夾角為30°的直線,交l于點(diǎn)A,求|PA|的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com