袋中有4個黑球,3個白球,2個紅球,從中任取2個球,每取到一個黑球得0分,每取到一個白球得1分,每取到一個紅球得2分,用ξ表示分?jǐn)?shù),求ξ的概率分布.
考點:離散型隨機變量的期望與方差
專題:概率與統(tǒng)計
分析:由題意知ξ=0,1,2,3,4,分別求出相應(yīng)的概率,由此能求出ξ的分布列.
解答: 解:由題意知ξ=0,1,2,3,4,
P(ξ=0)=
C
2
4
C
2
9
=
6
36
=
1
6
,
P(ξ=1)=
C
1
4
C
1
3
C
2
9
=
12
36
=
1
3
,
P(ξ=2)=
C
1
4
C
1
2
+
C
2
3
C
2
9
=
11
36
,
P(ξ=3)=
C
1
3
C
1
2
C
2
9
=
6
36
=
1
6
,
P(ξ=4)=
C
2
2
C
2
9
=
1
36

∴ξ的分布列為:
 ξ 0 2 3 4
 P 
1
6
 
1
3
 
11
36
 
1
6
 
1
36
點評:本題考查離散型隨機變量的分布列的求法,是中檔題,解題時要認(rèn)真審題,在歷年高考中都是必考題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果(1-2x9的展開式中第三項等于288,則
lim
n→∞
1
x
+
1
x2
+…+
1
xn
)等于(  )
A、
1
5
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,執(zhí)行相應(yīng)的程序,則輸出的S值為( 。
A、31B、32C、63D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-1≤x<3},B={x|m-2≤x≤m+2}.
(1)若A∩B=[0,3),求實數(shù)m的值;
(2)若A∩(∁RB)=A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(
1
2
)=2.
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(-1,1)上是增函數(shù);
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx-x2+2mx+m,(m∈R).
(1)當(dāng)m=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)x≥1時,若關(guān)于x的不等式f(x)≤0恒成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)證明:對任意實數(shù)b,函數(shù)y=f(x)的圖象與直線y=
1
2
x+b最多只有一個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,G是正方體ABCD-A1B1C1D1的棱的DD1延長線上的一點,E、F是棱AB、BC的中點,試分別畫出:
(1)過點G、A、C的平面與正方體表面的交線;
(2)過點E、F、D1的平面與正方體表面的交線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2x(a∈R)
(1)當(dāng)a=1時,求函數(shù)f(x)的零點.
(2)若
1
3
≤a≤1,且函數(shù)f(x)=ax2-2x在[1,3]上的最大值為M(a),最小值為N(a),令g(a)=M(a)-N(a).求g(a)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案