已知橢圓的兩焦點和短軸的兩端點正好是一正方形的四個頂點,且焦點到橢圓上一點的最近距離為.
(1)求橢圓的標準方程;
(2)設P是橢圓上任一點,MN 是圓C:的任一條直徑,求的最大值.
(1)(2)8
(1)由題意知故橢圓的標準方程為.5分
(2)=
從而只需求出的最大值………(9分)設P,則有,即有,又C(0,2),所以,而,
所以時,最大值為9,故的最大值為8。…………(13分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知拋物線為正常數(shù))的焦點為,過做一直線交拋物線兩點,點為坐標原點.
(1)若的面積記為,求的值;
(2)若直線垂直于軸,過點P做關于直線對稱的兩條直線,分別交拋物線C于M,N兩點,證明:直線MN斜率等于拋物線在點Q處的切線斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

我國計劃發(fā)射火星探測器,該探測器的運行軌道是以火星(其半徑百公里)的中心為一個焦點的橢圓. 如圖,已知探測器的近火星點(軌道上離火星表面最近的點)到火星表面的距離為百公里,遠火星點(軌道上離火星表面最遠的點)到火星表面的距離為800百公里. 假定探測器由近火星點第一次逆時針運行到與軌道中心的距離為百公里時進行變軌,其中分別為橢圓的長半軸、短半軸的長,求此時探測器與火星表面的距離(精確到1百公里).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

選修4-1:幾何證明選講
△ABC內接于⊙O,AB=AC,直線MN切⊙O于C,弦BD∥MN,AC、BD交于點E
(1)求證:△ABE≌△ACD
(2)AB=6,BC=4,求AE

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

,則直線和曲線的大致圖形可以是                                                       (     )
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若拋物線的焦點與橢圓右焦點重合,則的值為(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓中心在原點,一個焦點為(,0),且長軸長是短軸長的2倍,則該橢圓的標準方程是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以下五個關于圓錐曲線的命題中:
①雙曲線與橢圓有相同的焦點;
②方程的兩根可分別作為橢圓和雙曲線的離心率;
③設A、B為兩個定點,為常數(shù),若,則動點P的軌跡為雙曲線;
④過拋物線的焦點作直線與拋物線相交于A、B兩點,則使它們的橫坐標之和
等于5的直線有且只有兩條。
⑤過定圓C上一點A作圓的動弦AB,O為原點,若,則動點P的
軌跡為橢圓
其中真命題的序號為                (寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設P是橢圓上一點,M,N分別是兩圓:上的點,則|PM|+|PN|的最小值、最大值分別為             (   )
A.4,8B.2,6C.6,8D.8,12

查看答案和解析>>

同步練習冊答案