選修4-1:幾何證明選講
△ABC內(nèi)接于⊙O,AB=AC,直線(xiàn)MN切⊙O于C,弦BD∥MN,AC、BD交于點(diǎn)E
(1)求證:△ABE≌△ACD
(2)AB=6,BC=4,求AE
(1)略(2)AE=
(1)△ABE≌△ACD   
(2)△ABC∽△BEC    
           
∴AE=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知平面區(qū)域的外接圓軸交于點(diǎn),橢圓以線(xiàn)段
為長(zhǎng)軸,離心率
(1)求圓及橢圓的方程;
(2)設(shè)橢圓的右焦點(diǎn)為,點(diǎn)為圓上異于的動(dòng)點(diǎn),過(guò)原點(diǎn)作直線(xiàn)的垂線(xiàn)交直線(xiàn)于點(diǎn),判斷直線(xiàn)與圓的位置關(guān)系,并給出證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題 12分).過(guò)點(diǎn)A(-4,0)向橢圓引兩條切線(xiàn),切點(diǎn)分別為B,C,且為正三角形.
(Ⅰ)求最大時(shí)橢圓的方程;
(Ⅱ)對(duì)(Ⅰ)中的橢圓,若其左焦點(diǎn)為,過(guò)的直線(xiàn)軸交于點(diǎn),與橢圓的一個(gè)交點(diǎn)為,且求直線(xiàn)的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的兩焦點(diǎn)和短軸的兩端點(diǎn)正好是一正方形的四個(gè)頂點(diǎn),且焦點(diǎn)到橢圓上一點(diǎn)的最近距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上任一點(diǎn),MN 是圓C:的任一條直徑,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若雙曲線(xiàn)實(shí)軸長(zhǎng)、虛軸長(zhǎng)、焦距成等差數(shù)列,則雙曲線(xiàn)離心率為              

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(10分)求拋物線(xiàn)y=2x2與直線(xiàn)y=2x所圍成平面圖形的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)是圓上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸于點(diǎn),設(shè),則點(diǎn)的軌跡方程______________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

10.若曲線(xiàn)的焦點(diǎn)恰好是曲線(xiàn)的右焦點(diǎn),且交點(diǎn)的連線(xiàn)過(guò)點(diǎn),則曲線(xiàn)的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線(xiàn)與雙曲線(xiàn)。某學(xué)生做了如下變形:由方程組,消去后得到形如的方程。當(dāng)時(shí),該方程有一解,當(dāng)時(shí),恒成立。假設(shè)該學(xué)生的演算過(guò)程是正確的,則實(shí)數(shù)m的取值范圍是                                                     (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案