【題目】已知直線 ,若圓上恰好存在兩個點 ,,他們到直線 的距離為 ,則稱該圓為“完美型”圓.則下列圓中是“完美型”圓的是

A. B.

C. D.

【答案】D

【解析】

根據(jù)題意,算出到直線l距離等于1的兩條平行線方程為3x+4y﹣7=0或3x+4y﹣17=0,當(dāng)圓與這兩條直線共有2個公共點時滿足該圓為“完美型”圓.由此對A、B、C、D各項中的圓分別加以判斷,可得本題答案.

解:設(shè)直線l':3x+4y+m=0,l'與l的距離等于1則,解之得m=﹣7或﹣17,即l'的方程為3x+4y﹣7=0或3x+4y﹣17=0,可得當(dāng)圓與3x+4y﹣7=0、3x+4y﹣17=0恰好有2個公共點時,滿足該圓為“完美型”圓.

對于A,因為原點到直線l'的距離d=,兩條直線都與x2+y2=1相離,故x2+y2=1上不存在點,使點到直線l:3x+4y﹣12=0的距離為1,故A不符合題意.

對于B,因為原點到直線l'的距離d=,兩條直線都與x2+y2=16相交,故x2+y2=16上不存在4個點,使點到直線l:3x+4y﹣12=0的距離為1,故B不符合題意.

對于C,因為點(4,4)到直線l'的距離d=,兩條直線都與(x﹣4)2+(y﹣4)2=4相離,故(x﹣4)2+(y﹣4)2=4上不存在點,使點到直線l:3x+4y﹣12=0的距離為1,故C不符合題意.

對于D,因為點(4,4)到直線l'的距離d=,所以兩條直線中3x+4y﹣7=0與(x﹣4)2+(y﹣4)2=16相離,而3x+4y﹣17=0(x﹣4)2+(y﹣4)2=16相交,故(x﹣4)2+(y﹣4)2=16上恰好存在兩個點P、Q,使點到直線l:3x+4y﹣12=0的距離為1,故D符合題意.

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為的菱形, .

(1)求證:平面平面;

(2)若,求銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓軸相切于點,且被軸所截得的弦長為,圓心在第一象限.

(Ⅰ)求圓的方程;

(Ⅱ)若點是直線上的動點,過作圓的切線,切點為,當(dāng)△的面積最小時,求切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求函數(shù)的極值;

(Ⅱ)討論的單調(diào)性;

(Ⅲ)若對任意的,恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三一班舉辦消防安全知識競賽,分別選出3名男生和3名女生組成男隊和女隊,每人一道必答題,答對則為本隊得10分,答錯與不答都得0分,已知男隊每人答對的概率依次為 , ,女隊每人答對的概率都是 ,設(shè)每人回答正確與否相互之間沒有影響,用X表示男隊的總得分.
(I) 求X的分布列及其數(shù)學(xué)期望E(X);
(Ⅱ)求在男隊和女隊得分之和為50的條件下,男隊比女隊得分高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)角A,B,C的對邊分別是a,b,c,且滿足a( sinC+cosC)=b+c.
(I) 求角A的大;
(Ⅱ)已知函數(shù)f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,點 , 分別是橢圓 的左頂點和左焦點,點 上的動點,若 是常數(shù),則橢圓 的離心率為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)競賽中,30名參賽學(xué)生的成績(百分制)的莖葉圖如圖所示:若將參賽學(xué)生按成績由高到低編為1﹣30號,再用系統(tǒng)抽樣法從中抽取6人,則其中抽取的成績在[77,90]內(nèi)的學(xué)生人數(shù)為(

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直二面角中,四邊形ABCD是邊長為2的正方形,,FCE上的點,且平面ACE

求證:平面BCE;

求二面角的余弦值;

求點D到平面ACE的距離.

查看答案和解析>>

同步練習(xí)冊答案