如圖,四棱錐的底面是邊長為2的菱形,.已知 .

(Ⅰ)證明:
(Ⅱ)若的中點,求三菱錐的體積.

(Ⅰ)見解析(Ⅱ)

解析
(1)證明:連接交于
  
是菱形   
  ⊥面 
(2) 由(1)⊥面 
=

(1)證明線線垂直,需要線面垂直證起;(2)的面積是 的面積的2倍,點到面的高,求出面積和高,即能求出最終的體積.
【考點定位】考查空間直線與直線,直線與平面的位置,.三棱錐體積等基礎知識和基本技能,考查空間觀念,推理論證能力和運算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得點在平面ADC上的正投影O恰好落在線段上,如圖2所示,點分別為線段PC,CD的中點.

(I) 求證:平面OEF//平面APD;
(II)求直線CD與平面POF;
(III)在棱PC上是否存在一點,使得到點P,O,C,F四點的距離相等?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖, 平面平面, 是以為斜邊的等腰直角三角形, 分別為, , 的中點, ,

(1) 設的中點, 證明:平面;
(2) 證明:在內存在一點, 使平面, 并求點, 的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在邊長為1的等邊三角形中,分別是邊上的點,,的中點,交于點,將沿折起,得到如圖所示的三棱錐,其中

(1) 證明://平面;
(2) 證明:平面;
(3) 當時,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四棱錐中,側面底面,,底面是直角梯形,,,.

(Ⅰ)求證:平面;
(Ⅱ)設為側棱上一點,,試確定的值,使得二面角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知為平行四邊形所在平面外一點,的中點,
求證:平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為正方形,,
平面為棱的中點.

(1)求證:平面平面;
(2)求二面角的余弦值.
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

三棱錐,底面為邊長為的正三角形,平面平面,,上一點,,為底面三角形中心.

(Ⅰ)求證∥面;
(Ⅱ)求證:;
(Ⅲ)設中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

AB為圓O的直徑,點E、F在圓上,AB//EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,BC=EF=1。

(I)求證:BF⊥平面DAF;
(II)求多面體ABCDFE的體積。

查看答案和解析>>

同步練習冊答案