【題目】市場份額又稱市場占有率,它在很大程度上反映了企業(yè)的競爭地位和盈利能力,是企業(yè)非常重視的一個指標.近年來,服務機器人與工業(yè)機器人以迅猛的增速占領了中國機器人領域龐大的市場份額,隨著“一帶一路”的積極推動,包括機器人產(chǎn)業(yè)在內(nèi)的眾多行業(yè)得到了更廣闊的的發(fā)展空間,某市場研究人員為了了解某機器人制造企業(yè)的經(jīng)營狀況,對該機器人制造企業(yè)2017年1月至6月的市場份額進行了調(diào)查,得到如下資料:

月份

1

2

3

4

5

6

市場份額

11

163

16

15

20

21

請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程,并預測該企業(yè)2017年7月份的市場份額.

如圖是該機器人制造企業(yè)記錄的2017年6月1日至6月30日之間的產(chǎn)品銷售頻數(shù)(單位:天)統(tǒng)計圖.設銷售產(chǎn)品數(shù)量為,經(jīng)統(tǒng)計,當時,企業(yè)每天虧損約為200萬元;

時,企業(yè)平均每天收入約為400萬元;

時,企業(yè)平均每天收入約為700萬元.

①設該企業(yè)在六月份每天收入為,求的數(shù)學期望;

②如果將頻率視為概率,求該企業(yè)在未來連續(xù)三天總收入不低于1200萬元的概率.

附:回歸直線的方程是,其中

,

【答案】(1);預測該企業(yè)2017年7月份的市場份額為23%.

(2) ①;②.

【解析】試題分析:(1)根據(jù)題中數(shù)據(jù)得到, , ,代入樣本中心值得到,進而得到方程,將x=7代入方程即可;(2由題干知設該企業(yè)每天虧損約為200萬元為事件,平均每天收入約達到400萬元為事件,平均每天收入約達到700萬元為事件,則, ,進而得到分布列和均值;由第一小問得到未來連續(xù)三天該企業(yè)收入不低于1200萬元包含五種情況,求概率之和即可.

解析:

(1)由題意, ,

, ,

,

.

時, ,

所以預測該企業(yè)2017年7月的市場份額為23%.

(2)①設該企業(yè)每天虧損約為200萬元為事件,平均每天收入約達到400萬元為事件,平均每天收入約達到700萬元為事件,

, .

的分布列為

-200

400

700

0.1

0.2

0.3

所以(萬元).

②由①知,未來連續(xù)三天該企業(yè)收入不低于1200萬元包含五種情況.

.

所以該企業(yè)在未來三天總收入不低于1200萬元的概率為0.876.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下面四個正方體圖形中,為正方體的兩個頂點,、、分別為其所在棱的中點,能得出平面的圖形是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中華民族具有五千多年連綿不斷的文明歷史,創(chuàng)造了博大精深的中華文化,為人類文明進步作出了不可磨滅的貢獻.為弘揚傳統(tǒng)文化,某校組織了國學知識大賽,該校最終有四名選手、、、參加了總決賽,總決賽設置了一、二、三等獎各一個,無并列.比賽結束后,說:“你沒有獲得一等獎”,說:“你獲得了二等獎”;對大家說:“我未獲得三等獎”,、、說:“你媽三人中有一人未獲獎”,四位選手中僅有一人撒謊,則選手獲獎情形共計__________種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】山西省2021年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學、外語,自主選擇的3門普通高中學業(yè)水平等級考試科目是從物理、化學、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分。根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為共8個等級.參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉換法則,分別轉換到八個分數(shù)區(qū)間,得到考生的等級成績。舉例說明1:甲同學化學學科原始分為65分,化學學科 等級的原始分分布區(qū)間為,則該同學化學學科的原始成績屬等級,而等級的轉換分區(qū)間為那么,甲同學化學學科的轉換分為:設甲同學化學科的轉換等級分為 ,求得.四舍五入后甲同學化學學科賦分成績?yōu)?6分。舉例說明2:乙同學化學學科原始分為69分,化學學科等級的原始分分布區(qū)間為則該同學化學學科的原始成績屬等級.而等級的轉換分區(qū)間為這時不用公式,乙同學化學學科賦分成績直接取下端點70分,F(xiàn)有復興中學高一年級共3000人,為給高一學生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布。且等級為 所在原始分分布區(qū)間為,且等級為所在原始分分布區(qū)間為,且等級為所在原始分分布區(qū)間為

(1)若小明同學在這次考試中物理原始分為84分,小紅同學在這次考試中物理原始分為72分,求小明和小紅的物理學科賦分成績;(精確到整數(shù)).

(2)若以復興中學此次考試頻率為依據(jù),在學校隨機抽取4人,記這4人中物理原始成績在區(qū)間 的人數(shù),求的數(shù)學期望和方差.(精確到小數(shù)點后三位數(shù)).

附:若隨機變量滿足正態(tài)分布,給出以下數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,上任意一點。

(1)求證:

(2)當面積的最小值是9時,在線段上是否存在點,使與平面所成角的正切值為2?若存在?求出的值,若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,側面為矩形,,為棱的中點,交于點側面,的中點.

(1)證明:平面

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中為常數(shù),是自然對數(shù)的底數(shù).

(1)設,若函數(shù)在區(qū)間上有極值點,求實數(shù)的取值范圍;

(2)證明:當時,恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間20名工人年齡數(shù)據(jù)如下表:

年齡(歲)

19

24

26

30

34

35

40

合計

工人數(shù)(人)

1

3

3

5

4

3

1

20

(1)求這20名工人年齡的眾數(shù)與平均數(shù);

(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名工人年齡的莖葉圖;

(3)從年齡在24和26的工人中隨機抽取2人,求這2人均是24歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為橢圓上的點,是兩焦點,若,則的面積是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案