【題目】已知函數(shù),,其中為常數(shù),是自然對數(shù)的底數(shù).

(1)設(shè),若函數(shù)在區(qū)間上有極值點,求實數(shù)的取值范圍;

(2)證明:當時,恒成立.

【答案】(1);(2)證明見解析.

【解析】試題分析:(1),則上有極值點,則上有變號零點,設(shè)研究單調(diào)性使得函數(shù)和x軸有兩個交點即可;(2)要證成立,,

分別求得左式的最大值和右式的最小值,證得最大值小于最小值即可.

解析:

(1)由題意,,則,

由題意,若上有極值點,

上有變號零點.

,即,

設(shè),

,

,,,

,,

,

.

故若函數(shù)上有極值點,

只需

,

所以的取值范圍為.

(2)由題意,知要證成立.

設(shè),,

,

時,,

時,,

所以當時,取得最大值.

所以.

設(shè),,

,

因為,則,

在區(qū)間內(nèi)單調(diào)遞增,

,即.

所以

.

綜上,當時,.

命題得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的底面是等邊三角形,點在平面上的射影在內(nèi)(不包括邊界),.,與底面所成角為,;二面角,的平面角為,,則,,之間的大小關(guān)系等確定的是()

A. B.

C. 是最小角,是最大角D. 只能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 若函數(shù)有零點, 求實數(shù)的取值范圍;

(Ⅱ) 證明: 當時, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】市場份額又稱市場占有率,它在很大程度上反映了企業(yè)的競爭地位和盈利能力,是企業(yè)非常重視的一個指標.近年來,服務(wù)機器人與工業(yè)機器人以迅猛的增速占領(lǐng)了中國機器人領(lǐng)域龐大的市場份額,隨著“一帶一路”的積極推動,包括機器人產(chǎn)業(yè)在內(nèi)的眾多行業(yè)得到了更廣闊的的發(fā)展空間,某市場研究人員為了了解某機器人制造企業(yè)的經(jīng)營狀況,對該機器人制造企業(yè)2017年1月至6月的市場份額進行了調(diào)查,得到如下資料:

月份

1

2

3

4

5

6

市場份額

11

163

16

15

20

21

請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并預(yù)測該企業(yè)2017年7月份的市場份額.

如圖是該機器人制造企業(yè)記錄的2017年6月1日至6月30日之間的產(chǎn)品銷售頻數(shù)(單位:天)統(tǒng)計圖.設(shè)銷售產(chǎn)品數(shù)量為,經(jīng)統(tǒng)計,當時,企業(yè)每天虧損約為200萬元;

時,企業(yè)平均每天收入約為400萬元;

時,企業(yè)平均每天收入約為700萬元.

①設(shè)該企業(yè)在六月份每天收入為,求的數(shù)學(xué)期望;

②如果將頻率視為概率,求該企業(yè)在未來連續(xù)三天總收入不低于1200萬元的概率.

附:回歸直線的方程是,其中

, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點為的的拋物線)與圓心在坐標原點,半徑為交于兩點,且,,其中,,均為正實數(shù).

(1)求拋物線的方程;

(2)設(shè)點為劣弧上任意一點,過的切線交拋物線,兩點,過,的直線均于拋物線相切,且兩直線交于點,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),在集合的所有元素個數(shù)為2的子集中,把每個子集的較大元素相加和記為a,較小元素之和記為b.

(1)n=3,a, b的值;

(2)n=4,求集合的所有3個元素子集中所有元素之和;

(3)對任意的,是否為定值?若是定值,請給出證明并求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機變量X服從正態(tài)分布Nμσ2),且PμXμ)=0.954 4PμσXμσ)=0.682 6.μ4,σ1,則P5X6)=( )

A. 0.135 9 B. 0.135 8 C. 0.271 8 D. 0.271 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)為,且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,側(cè)面底面ABCD,底面ABCD為直角梯形,,,,,EF分別為AD,PC的中點.

求證:平面BEF;

,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案