[2014·日照模擬]為保證某個(gè)重大事件的順利進(jìn)行,將從四個(gè)部隊(duì)中選一個(gè)擔(dān)任安全保衛(wèi)工作,為了解四個(gè)部隊(duì)的“安保”能力,則下列抽取人數(shù)的方法中最好的是(  )

A.抽簽法 B.隨機(jī)數(shù)表法

C.系統(tǒng)抽樣法 D.分層抽樣法

 

D

【解析】因?yàn)樗膫(gè)部隊(duì)的“安!蹦芰τ幸欢ǖ牟罹啵什捎梅謱映闃臃椒ǜ鼮楹侠恚

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)理一輪配套特訓(xùn):3-2同角三角函數(shù)基本關(guān)系式與誘導(dǎo)公式(解析版) 題型:選擇題

在△ABC中, sin(-A)=3sin(π-A),且cosA=-cos(π-B),則C等于(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)一輪配套特訓(xùn):1-2命題及其關(guān)系、充分條件與必要條件(解析版) 題型:解答題

已知函數(shù)f(x)在區(qū)間(-∞,+∞)上是增函數(shù),a,b∈R.

(1)求證:若a+b≥0,則f(a)+f(b)≥f(-a)+f(-b);

(2)判斷(1)中命題的逆命題是否正確,并證明你的結(jié)論.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:9-3變量間的相關(guān)關(guān)系與統(tǒng)計(jì)案例(解析版) 題型:選擇題

[2013·福建高考]已知x與y之間的幾組數(shù)據(jù)如下表:

x

1

2

3

4

5

6

y

0

2

1

3

3

4

假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程為x+.若某同學(xué)根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為y=b′x+a′,則以下結(jié)論正確的是(  )

A. >b′,>a′ B. >b′,<a′

C. <b′,>a′ D. <b′,<a′

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:9-2用樣本估計(jì)總體(解析版) 題型:選擇題

[2013·重慶高考]下圖是某公司10個(gè)銷售店某月銷售某產(chǎn)品數(shù)量(單位:臺)的莖葉圖,則數(shù)據(jù)落在區(qū)間[22,30)內(nèi)的頻率為(  )

A.0.2 B.0.4 C.0.5 D.0.6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-9圓錐曲線的綜合問題(解析版) 題型:選擇題

[2013·四川高考]拋物線y2=4x的焦點(diǎn)到雙曲線x2-=1的漸近線的距離是(  )

A. B. C.1 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-7拋物線(解析版) 題型:填空題

[2013·江西高考]拋物線x2=2py(p>0)的焦點(diǎn)為F,其準(zhǔn)線與雙曲線=1相交于A,B兩點(diǎn),若△ABF為等邊三角形,則p=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題

[2012·湖北高考]過點(diǎn)P(1,1)的直線,將圓形區(qū)域{(x,y)|x2+y2≤4}分成兩部分,使得這兩部分的面積之差最大,則該直線的方程為(  )

A.x+y-2=0 B.y-1=0

C.x-y=0 D.x+3y-4=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-2空間幾何體的表面積和體積(解析版) 題型:填空題

[2013·江蘇高考]如圖,在三棱柱A1B1C1-ABC中,D,E,F(xiàn)分別是AB,AC,AA1的中點(diǎn),設(shè)三棱錐F-ADE的體積為V1,三棱柱A1B1C1-ABC的體積為V2,則V1∶V2=________.

 

 

查看答案和解析>>

同步練習(xí)冊答案