設(shè)實(shí)數(shù)x,y滿足x2+y2-2y=0,則x2+y2的最大值是
 
分析:利用x2+y2可以看成是圓上的點(diǎn)到原點(diǎn)距離平方,從而轉(zhuǎn)化為求圓上一點(diǎn)到原點(diǎn)距離的最大值即可.
解答:解:x2+y2-2y=0可化為x2+(y-1)2=1為圓心(0,1),半徑為1的圓.
x2+y2的最大值可以看成是圓上的點(diǎn)到原點(diǎn)距離平方的最大值.
求圓上一點(diǎn)到原點(diǎn)距離的最大值,顯然當(dāng)x=0,y=2時(shí),(0,2)到原點(diǎn)距離最大,
∴x2+y2的最大值是0+4=4
故答案為:4.
點(diǎn)評(píng):本題考查圓的方程,考查學(xué)生轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、設(shè)實(shí)數(shù)x,y滿足x2+2xy-1=0,則x+y的取值范圍是
(-∞,-1]∪[1,∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足x2-y2+x+3y-2≥0,當(dāng)x∈[-2,2]時(shí),x+y的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足x2+(y-1)2=1,若不等式x+y+C≥0對(duì)任意的x,y都成立,則實(shí)數(shù)C的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿足x2+(y-2)2=1,若對(duì)滿足條件x,y,不等式x2+y2+c≤0恒成立,則c的取值范圍是
c≤-9
c≤-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y 滿足x2+y2+xy=1,求x+y的最大值.
題設(shè)條件“x2+y2+xy=1”有以下兩種等價(jià)變形:
(x+
y
2
)2+(
3
2
y)2=1
;
②x2+y2-2xycos120°=1.
請(qǐng)按上述變形提示,用兩種不同的方法分別解答原題.

查看答案和解析>>

同步練習(xí)冊(cè)答案