在△ABC中,三個(gè)內(nèi)角之比為A:B:C=1:2:3,那么相對應(yīng)的三邊之比a:b:c等于(  )
A、1:
3
:2
B、1:2:3
C、2:
3
:1
D、3:2:1
分析:根據(jù)三角形的內(nèi)角和公式可得A=30°、B=60°、C=90°,再由正弦定理可得 a:b:c=sin30°:sin60°:
sin90°,運(yùn)算求得結(jié)果.
解答:解:在△ABC中,三個(gè)內(nèi)角之比為A:B:C=1:2:3,再由內(nèi)角和公式可得A=30°,B=60°,
C=90°.再由正弦定理可得 a:b:c=sin30°:sin60°:sin90°=1:
3
:2,
故選A.
點(diǎn)評:本題考查正弦定理,三角形的內(nèi)角和公式,求出A=30°、B=60°、C=90°,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、對于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1),B(x2,y2),定義它們之間的一種“距離”:||AB||=|x2-x1|+|y2-y1|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則||AC||+||CB||=||AB||;
②在△ABC中,若∠C=90o,則||AC||2+||CB||2=||AB||2;
③在△ABC中,||AC||+||CB||>||AB||.
其中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,三個(gè)內(nèi)角A、B、C所對的邊分別為a、b、c,設(shè)復(fù)數(shù)z=sinA(sinA-sinC)+(sin2B-sin2C)i,且z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在直線y=x上.
(1)求角B的大;
(2)若sinB=cosAsinC,△ABC的外接圓的面積為4π,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于直角坐標(biāo)平面內(nèi)的任意兩點(diǎn)A(x1,y1)、B(x2,y2),定義它們之間的一種“距離”:‖AB‖=|x1-x2|+|y1-y2|.給出下列三個(gè)命題:
①若點(diǎn)C在線段AB上,則‖AC‖+‖CB‖=‖AB‖;
②在△ABC中,若∠C=90°,則‖AC‖+‖CB‖=‖AB‖;
③在△ABC中,‖AC‖+‖CB‖>‖AB‖.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①“若x+y=0,則x,y互為相反數(shù)”的逆命題是“若x,y互為相反數(shù),則x+y=0”.
②在平面內(nèi),F(xiàn)1、F2是定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足||MF1|-|MF2||=4,則點(diǎn)M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個(gè)角成等差數(shù)列”的充要條件.
④“若-3<m<5則方程
x2
5-m
+
y2
m+3
=1
是橢圓”.
⑤在四面體OABC中,
OA
=
a
,
OB
=
b
,
OC
=
c
,D為BC的中點(diǎn),E為AD的中點(diǎn),則
OE
=
1
2
a
+
1
4
b
+
1
4
c

⑥橢圓
x2
25
+
y2
9
=1
上一點(diǎn)P到一個(gè)焦點(diǎn)的距離為5,則P到另一個(gè)焦點(diǎn)的距離為5.
其中真命題的序號是:
①②③⑤⑥
①②③⑤⑥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC中,三個(gè)內(nèi)角A、B、C所對的邊分別為a、b、c,設(shè)復(fù)數(shù)z=sinA(sinA-sinC)+(sin2B-sin2C)i,且z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在直線y=x上.
(1)求角B的大;
(2)若sinB=cosAsinC,△ABC的外接圓的面積為4π,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案