(2003•北京)如圖,已知底面半徑為r的圓柱被一個(gè)平面所截,剩下部分母線長(zhǎng)的最大值為a,最小值為b,那么圓柱被截后剩下部分的體積是 .

 

 

【解析】

試題分析:用補(bǔ)形法:兩個(gè)相同的幾何體,倒立一個(gè),對(duì)應(yīng)合縫,恰好形成一個(gè)圓柱體.求出總體積的一半即可.

【解析】
取兩個(gè)相同的幾何體,倒立一個(gè),對(duì)應(yīng)合縫,恰好形成一個(gè)圓柱體.

所求幾何體的體積:=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.3線性變換的基本性質(zhì)練習(xí)卷(解析版) 題型:選擇題

(2010•黃浦區(qū)一模)已知關(guān)于x、y的二元一次線性方程組的增廣矩陣是,則該線性方程組有無窮多組解的充要條件是λ=( )

A.2 B.1或2 C.1 D.0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:選擇題

已知函數(shù),若將其圖象繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)角后,所得圖象仍是某函數(shù)的圖象,則當(dāng)角θ取最大值θ0時(shí),tanθ0=( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.3平面與圓錐面的截線練習(xí)卷(解析版) 題型:解答題

(2010•順義區(qū)一模)已知橢圓C:,(a>b>0)的兩焦點(diǎn)分別為F1、F2,,離心率.過直線l:上任意一點(diǎn)M,引橢圓C的兩條切線,切點(diǎn)為A、B.

(1)在圓中有如下結(jié)論:“過圓x2+y2=r2上一點(diǎn)P(x0,y0)處的切線方程為:x0x+y0y=r2”.由上述結(jié)論類比得到:“過橢圓(a>b>0),上一點(diǎn)P(x0,y0)處的切線方程”(只寫類比結(jié)論,不必證明).

(2)利用(1)中的結(jié)論證明直線AB恒過定點(diǎn)();

(3)當(dāng)點(diǎn)M的縱坐標(biāo)為1時(shí),求△ABM的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:填空題

底面直徑為10的圓柱被與底面成60°的平面所截,截口是一個(gè)橢圓,該橢圓的長(zhǎng)軸長(zhǎng) ,短軸長(zhǎng) ,離心率為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.1平行射影練習(xí)卷(解析版) 題型:填空題

如圖,直角坐標(biāo)系x'oy所在的平面為β,直角坐標(biāo)系xoy所在的平面為α,且二面角α﹣y軸﹣β的大小等于30°.已知β內(nèi)的曲線C'的方程是,則曲線C'在α內(nèi)的射影的曲線方程是 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:填空題

(2014•咸陽(yáng)二模)如圖,已知P是圓O外一點(diǎn),PA為 圓O的切線.A為切點(diǎn).割線PBC經(jīng)過圓心O,若PA=3,PC=9,則∠ACP= .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:選擇題

如圖,AB是半圓O的直徑,C、D是半圓上的兩點(diǎn),半圓O的切線PC交AB的延長(zhǎng)線于點(diǎn)P,∠PCB=25°,則∠ADC為( )

A.105° B.115° C.120° D.125°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 3.3綜合法與分析法練習(xí)卷(解析版) 題型:選擇題

若a>b>c,則使恒成立的最大的正整數(shù)k為( )

A.2 B.3 C.4 D.5

 

查看答案和解析>>

同步練習(xí)冊(cè)答案