10.在三角形ABC中,角A,B,C所對(duì)邊分別為a,b,c,滿足(2b-c)cosA=acosC.
(1)求角A;
(2)若$a=\sqrt{13}$,b+c=5,求三角形ABC的面積.

分析 (Ⅰ)(2b-c)cosA=acosC,由正弦定理得:(2sinB-sinC)cosA=sinAcosC,再利用和差公式、三角形內(nèi)角和定理、誘導(dǎo)公式可得cosA=$\frac{1}{2}$,A∈(0,π).解得A.
(2)由余弦定理得a2=b2+c2-2bccosA,把$a=\sqrt{13}$,b+c=5,代入可得bc,可得三角形ABC的面積S=$\frac{1}{2}bc$sinA.

解答 解:(Ⅰ)在三角形ABC中,∵(2b-c)cosA=acosC,
由正弦定理得:(2sinB-sinC)cosA=sinAcosC,
化為:2sinBcosA=sinCcosA+sinAcosC=sin(A+C)=sinB,
sinB≠0,解得cosA=$\frac{1}{2}$.A∈(0,π).
∴A=$\frac{π}{3}$.
(2)由余弦定理得a2=b2+c2-2bccosA,
∵$a=\sqrt{13}$,b+c=5,
∴13=(b+c)2-3cb=52-3bc,
化為bc=4,
所以三角形ABC的面積S=$\frac{1}{2}bc$sinA=$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理、和差公式、三角形內(nèi)角和定理、誘導(dǎo)公式、三角形的面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=ea(x-1)-ax2,a為不等于零的常數(shù).
(Ⅰ)當(dāng)a<0時(shí),求函數(shù)f′(x)的零點(diǎn)個(gè)數(shù);
(Ⅱ)若對(duì)任意x1,x2,當(dāng)x1<x2時(shí),f(x2)-f(x1)>a(${e}^{a({x}_{1}-1)}$-2x1)(x2-x1)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若冪函數(shù)y=(m2-4m+1)xm2-2m-3為(0,+∞)上的增函數(shù),則實(shí)數(shù)m的值等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.使log2(-x)<x+1成立的實(shí)數(shù)的取值范圍是(  )
A.(-∞,1)B.(-∞,0)C.(-1,+∞)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)a,b是空間中不同的直線,α,β是不同的平面,則下列說法正確的是( 。
A.a∥b,b?α,則a∥αB.a?α,b?β,α∥β,則a∥b
C.a?α,b?α,α∥β,b∥β,則α∥βD.α∥β,a?α,則a∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)復(fù)數(shù)z滿足z(l+i)=3-i,則|$\overline{z}$|等于( 。
A.$\sqrt{5}$B.5C.1-2iD.1+2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.為研究人的身高與體重的關(guān)系,某學(xué)習(xí)小組通過調(diào)查并繪制出如圖所示的散點(diǎn)圖,其中△代表男生,●代表女生,根據(jù)圖中信息,寫出一個(gè)統(tǒng)計(jì)結(jié)論人的身高與體重是有正相關(guān)關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,λ),且$\overrightarrow{a}$∥$\overrightarrow$,則λ=(  )
A.-6B.6C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=2$\sqrt{3}$sin2($\frac{π}{4}$+x)+2sin($\frac{π}{4}$+x)cos($\frac{π}{4}$+x).
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間及其對(duì)稱中心;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且角A滿足f(A)=$\sqrt{3}$+1,若a=3,BC邊上的中線長(zhǎng)為3,求△ABC的面積S.

查看答案和解析>>

同步練習(xí)冊(cè)答案