分析 將不等式f(x)-m≥0轉(zhuǎn)化為f(x)≥m有解,然后利用導(dǎo)數(shù)求函數(shù)f(x)在[1,e]的最大值,則實(shí)數(shù)m的范圍可求.
解答 解:由f(x)-m≥0,得f(x)≥m,
函數(shù)f(x)=x2-2lnx的定義域?yàn)椋?,+∞),函數(shù)的導(dǎo)數(shù)為f′(x)=2x-$\frac{2}{x}$=$\frac{2({x}^{2}-1)}{x}$,
當(dāng)x∈[1,e]時(shí),f′(x)>0,即函數(shù)f(x)在[1,e]上單調(diào)遞增,
∴f(1)≤f(x)≤f(e),即1≤f(x)≤e2-2,
要使f(x)-m≥0在[1,e]有實(shí)數(shù)解,則有m≤e2-2.
故答案為:(-∞,e2-2].
點(diǎn)評(píng) 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及最值問(wèn)題,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30 | B. | 33 | C. | 31 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | φ | B. | baubxjb | C. | {a,c} | D. | {b,e} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com