9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{|x-1|,x∈(0,2)}\\{2-|x-1|,x∈(-∞,0]∪[2,+∞)}\end{array}\right.$,則函數(shù)y=f(x)與y=$\frac{1}{2}$的圖象的交點的個數(shù)是4.

分析 函數(shù)y=f(x)與y=$\frac{1}{2}$的圖象的交點,即是f(x)=$\frac{1}{2}$的解,分段解得即可.

解答 解:當x∈(0,2)時,|x-1|=$\frac{1}{2}$,解得x=$\frac{1}{2}$或x=$\frac{3}{2}$,
當x∈(-∞,0]∪[2,+∞)時,2-|x-1|=$\frac{1}{2}$,解得x=-$\frac{1}{2}$或x=$\frac{5}{2}$,
綜上所述函數(shù)y=f(x)與y=$\frac{1}{2}$的圖象的交點的個數(shù)是4,
故答案為:4

點評 本題主要考查分段函數(shù)的應(yīng)用,以及方程的解的問題,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.若輸入a=16,A=1,S=0,n=1,執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為(  )
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\frac{1}{{{{(|x-1|-a)}^2}}}$的定義域為D,其中a<1.
(1)當a=-3時,寫出函數(shù)f(x)的單調(diào)區(qū)間(不要求證明);
(2)若對于任意的x∈[0,2]∩D,均有f(x)≥kx2成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知如圖PA⊥平面ABCD,四邊形ABCD是矩形,E、F分別是AB、PD的中點,求證:AF∥平面PCE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若關(guān)于x的不等式ax2-4ax-2>0的解集與集合{x|3<x<4}的交集不空,則實數(shù)a的取值范圍是(-∞,-$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.點P為△ABC邊上或內(nèi)部任一點,則使S△PBC≤$\frac{1}{3}$S△ABC的概率是( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知三角形的三個頂點A(-1,2),B(3,-1),C(-1,-3),求BC邊中線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)$y={sin^4}x+2\sqrt{3}sinxcosx-{cos^4}x$
(1)求該函數(shù)的最小正周期和取最小值時x的集合;
(2)若x∈[0,π],求該函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)△ABC的三個內(nèi)角為A,B,C,若$\sqrt{3}$sin(A+B)=1+cos(A+B),則C的值為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習冊答案