16.已知y=f(x),x∈D(D為此函數(shù)的定義域)同時滿足下列兩個條件:
(1)函數(shù)f(x)在D上單調(diào)遞增或單調(diào)遞減;
(2)存在區(qū)間[a,b]⊆D,使函數(shù)f(x)在區(qū)間[a,b]上的值域?yàn)閇a,b],那么稱y=f(x),x∈D為閉函數(shù).請回答以下問題:
(1)判斷函數(shù)f(x)=3x(x∈(0,+∞))是否為閉函數(shù),并說明理由
(2)若y=k+$\sqrt{x}$(k<0)是閉函數(shù),求k的取值范圍.

分析 (1)判斷函數(shù)y=3x是(0,+∞)上的增函數(shù),但不滿足條件②,故不是閉函數(shù);
(2)易知y=k+$\sqrt{x}$是(0,+∞)上的增函數(shù),設(shè)函數(shù)符合條件②的區(qū)間為[a,b],求出滿足條件的k的取值范圍.

解答 解:(1)函數(shù)y=3x是(0,+∞)上的增函數(shù),
由題意得:$\left\{\begin{array}{l}{a{=3}^{a}}\\{b{=3}^}\end{array}\right.$,
即方程x=3x有兩個不等的實(shí)數(shù)根,這是不成立的,從而該函數(shù)不是閉函數(shù)
(2)易知y=k+$\sqrt{x}$是(0,+∞)上的增函數(shù),
設(shè)函數(shù)符合條件②的區(qū)間為[a,b],則$\left\{\begin{array}{l}{a=k+\sqrt{a}}\\{b=k+\sqrt}\end{array}\right.$;
故a,b是x=k+$\sqrt{x}$的兩個不等根,
即方程組為:x2-(2k+1)x+k2=0兩個不等非負(fù)實(shí)根;
設(shè)x1,x2為方程x2-(2k+1)x+k2=0的二根,
則△=(2k+1)2-4k2>0①,x1+x2=2k+1>0②,x1x2=k2≥0③,k<0④,
由①②③④解得:-$\frac{1}{4}$<k<0,
∴k的取值范圍是(-$\frac{1}{4}$,0).

點(diǎn)評 本題考查新定義,考查導(dǎo)數(shù)知識的運(yùn)用,解題的關(guān)鍵是理解新定義,并利用新定義求參數(shù)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.牡丹花會期間,5名志愿者被分配到我市3個博物館為外地游客提供服務(wù),其中甲博物館分配1人,另兩個博物館各分配2人,則不同的分配方法共有( 。
A.15種B.30種C.90種D.180種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知離心率等于2的雙曲線的一個焦點(diǎn)與拋物線$x=\frac{1}{8}{y^2}$的焦點(diǎn)重合,則該雙曲線的方程為x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)F1,F(xiàn)2為橢圓$\frac{x^2}{9}+\frac{y^2}{5}$=1的兩個焦點(diǎn),點(diǎn)P在橢圓上,若線段PF1的中點(diǎn)在y軸上,則$\frac{{|{P{F_2}}|}}{{|{P{F_1}}|}}$的值為( 。
A.$\frac{5}{14}$B.$\frac{4}{9}$C.$\frac{5}{13}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(x2-x)lnx-$\frac{3}{2}{x^2}$+2x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=$\frac{(a+1)x}{lnx}$,對任意x∈(1,+∞)都有f(x)>g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C所對的邊分別為a,b,c,且asinB+$\sqrt{3}$acosB=$\sqrt{3}$c.
(Ⅰ)求角A的大;
(Ⅱ)已知函數(shù)f(x)=λcos2(ωx+$\frac{A}{2}$)-3(λ>0,ω>0)的最大值為2,將y=f(x)的圖象的縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的$\frac{3}{2}$倍后便得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)的最小正周期為π.當(dāng)x∈[0,$\frac{π}{2}$]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知拋物線C:y2=4x與點(diǎn)M(-1,2),過C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,則k=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足2bsin(C+$\frac{π}{6}$)=a+c.
(Ⅰ)求角B的大;
(Ⅱ)若點(diǎn)M為BC中點(diǎn),且AM=AC=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)F1、F2是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn),P為雙曲線左支上任意一點(diǎn),若|PF2|=2|PF1|,∠F1PF2=60°,則雙曲線離心率等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}$+$\sqrt{3}$D.$\sqrt{3}$-$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案