已知函數(shù)若函數(shù)
在x = 0處取得極值.
(1) 求實(shí)數(shù)的值;
(2) 若關(guān)于x的方程在區(qū)間[0,2]上恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍;
(3)證明:對(duì)任意的正整數(shù)n,不等式都成立.
(1);(2)
;(3)見(jiàn)解析.
解析試題分析:(1)先有已知條件寫(xiě)出的解析式,然后求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)極值的關(guān)系得到
,解得
的值;(2)由
構(gòu)造函數(shù)
,則
在
上恰有兩個(gè)不同的實(shí)數(shù)根等價(jià)于
在
恰有兩個(gè)不同實(shí)數(shù)根,對(duì)函數(shù)
求導(dǎo),根據(jù)函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系找到函數(shù)
的單調(diào)區(qū)間,再由零點(diǎn)的存在性定理得到
,解不等式組即可;(3)證明不等式
,即是證明
,即
.對(duì)函數(shù)
求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,找到其在區(qū)間
上的最大值
,則有
成立,那么不等式
得證.
試題解析:(1) 由題意知則
, 2分
∵時(shí),
取得極值,∴
,故
,解得
.
經(jīng)檢驗(yàn)符合題意. 4分
(2)由知
由 ,得
, 5分
令,
則在
上恰有兩個(gè)不同的實(shí)數(shù)根等價(jià)于
在
恰有兩個(gè)不同實(shí)數(shù)根.
, 7分
當(dāng)時(shí),
,于是
在
上單調(diào)遞增;
當(dāng)時(shí),
,于是
在
上單調(diào)遞減.依題意有
,即
,
.9分
(3) 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/61/e/mtits1.png" style="vertical-align:middle;" />,由(1)知
,
令得,
或
(舍去), 11分
∴當(dāng)時(shí),
,
單調(diào)遞增;
當(dāng)時(shí),
,
單調(diào)遞減. ∴
為
在
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知函數(shù) .
(I)若是,
的極值點(diǎn),討論
的單調(diào)性;
(II)當(dāng)時(shí),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
;
(1)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)在[1,2]上是減函數(shù),求實(shí)數(shù)
的取值范圍;
(3)令,是否存在實(shí)數(shù)
,當(dāng)
(
是自然對(duì)數(shù)的底數(shù))時(shí),函數(shù)
的最小值是
.若存在,求出
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知點(diǎn),函數(shù)
的圖象上的動(dòng)點(diǎn)
在
軸上的射影為
,且點(diǎn)
在點(diǎn)
的左側(cè).設(shè)
,
的面積為
.
(Ⅰ)求函數(shù)的解析式及
的取值范圍;
(Ⅱ)求函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在點(diǎn)
處的切線方程為
.
⑴求函數(shù)的解析式;
⑵若對(duì)于區(qū)間上任意兩個(gè)自變量的值
都有
,求實(shí)數(shù)
的最小值;
⑶若過(guò)點(diǎn)可作曲線
的三條切線,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),曲線
過(guò)點(diǎn)P(1,0),且在P點(diǎn)處的切斜線率為2.
(1)求,
的值;
(2)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)>0)
(1)若的一個(gè)極值點(diǎn),求
的值;
(2)上是增函數(shù),求a的取值范圍
(3)若對(duì)任意的總存在
>
成立,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)求f(x)的單調(diào)區(qū)間及極值;
(II)若關(guān)于x的不等式恒成立,求實(shí)數(shù)a的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求
的單調(diào)區(qū)間;
(2)若函數(shù)在
單調(diào)遞減,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com