18.若x,y滿足約束條件$\left\{\begin{array}{l}x+y-5≤0\\ 2x-y-1≥0\\ x-2y+1≤0\end{array}\right.$,等差數(shù)列{an}滿足a1=x,a5=y,其前n項為Sn,則S5-S2的最大值為$\frac{35}{4}$.

分析 先根據(jù)等差數(shù)列的性質(zhì)和求和公式可得z=S5-S2=$\frac{11}{4}$x+$\frac{y}{4}$,畫出約束條件時可行域,求出z的最大值即可

解答 解:等差數(shù)列{an}滿足a1=x,a5=y,
∴d=$\frac{y-x}{4}$,
∴設z=S5-S2=5a1+10d-2a1-d=3a1+9d=3x+$\frac{y-x}{4}$=$\frac{11}{4}$x+$\frac{y}{4}$,
則y=-11x+$\frac{z}{4}$,
平移目標函數(shù),當過點A時,在y軸的截距最大,此時z最大
由$\left\{\begin{array}{l}{x+y-5=0}\\{x-2y+2=0}\end{array}\right.$解得x=3,y=2,即A(3,2),
∴z=$\frac{33}{4}$+$\frac{2}{4}$=$\frac{35}{4}$,
故答案為:$\frac{35}{4}$

點評 本題考查了等差數(shù)列的求和公式和線性規(guī)劃在求解目標函數(shù)中的最值中的應用,屬于中檔題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.化簡:$\frac{sin(kπ-α)cos[(k-1)π-α]}{sin[(k+1)π+α]cos(kπ+α)}$(k∈Z).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.設等差數(shù)列{an}的前n項和為Sn,若Sn有最大值,且$\frac{{a}_{9}}{{a}_{8}}$<-1,則Sn取得最小正值時,n=( 。
A.1B.8C.15D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知a,b>0,且a+b=1,求證:$\sqrt{a+1}+\sqrt{b+1}≤\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,由拋物線y2=8x與直線x+y-6=0及x軸所圍成的圖形(圖中陰影部分)的面積為$\frac{40}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設集合A={x|x2+x-6<0},B={x|1≤x≤3},則A∩B=( 。
A.[1,2]B.[1,2)C.[2,3]D.(2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知定義在R上的奇函數(shù)y=f(x)的圖象關于直線x=1對稱,當-1≤x<0時,f(x)=-log${\;}_{\frac{1}{2}}$(-x),則方程f(x)-$\frac{1}{2}$=0在(0,6)內(nèi)的所有根之和為12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.由于研究性學習的需要,中學生李華持續(xù)收集了手機“微信運動”團隊中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下:
5860  6520  7326  6798  7325
8430  8215  7453  7446  6754
7638  6834  6460  6830  9860
8753  9450  9860  7290  7850
對這20個數(shù)據(jù)按組距1000進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
步數(shù)分組統(tǒng)計表(設步數(shù)為x)
組別步數(shù)分組頻數(shù)
A5500≤x<65002
B6500≤x<750010
C7500≤x<8500m
D8500≤x<95002
E9500≤x<10500n
(Ⅰ)寫出m,n的值,若該“微信運動”團隊共有120人,請估計該團隊中一天行走步數(shù)不少于7500步的人數(shù);
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1,$s_1^2$,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2,$s_2^2$,試分別比較v1與v2,$s_1^2$與$s_2^2$的大。唬ㄖ恍鑼懗鼋Y論)
(Ⅲ)從上述A,E兩個組別的步數(shù)數(shù)據(jù)中任取2個數(shù)據(jù),求這2個數(shù)據(jù)步數(shù)差的絕對值大于3000步的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設0<a<1,且m=loga(a2+1),n=loga(a+1),p=loga(2a),則m,n,p的大小關系為(  )
A.n>m>pB.p>m>nC.m>n>pD.m>p>n

查看答案和解析>>

同步練習冊答案