【題目】已知橢圓長(zhǎng)軸的兩頂點(diǎn)為、,左、右焦點(diǎn)分別為、,焦距為,且,過(guò)且垂直于軸的直線被橢圓截得的弦長(zhǎng)為.
(1)求橢圓的方程;
(2)在雙曲線上取點(diǎn)異于頂點(diǎn),直線與橢圓交于點(diǎn),若直線、、、的斜率分別為、、、,試證明:為定值;
(3)在橢圓外的拋物線上取一點(diǎn),若、的斜率分別為、,求的取值范圍.
【答案】(1);(2)證明見(jiàn)解析;(3).
【解析】
(1)由,可得出,由題意得出點(diǎn)在橢圓上,將此點(diǎn)的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)、,根據(jù)直線的斜率公式,求得,,由與共線,得出,即可求出;
(3)設(shè)點(diǎn),求得(且),(且),可得出(且),然后利用函數(shù)的單調(diào)性可得出的取值范圍.
(1),,所以,橢圓的方程為,
由于且垂直于軸的直線被橢圓截得的弦長(zhǎng)為,則點(diǎn)在橢圓上,
所以, ,解得,,,
因此,橢圓的標(biāo)準(zhǔn)方程為;
(2)設(shè)點(diǎn)、,由(1)可知、、、,
則,得,,
,得,.
又,,可得,
因此,(定值);
(3)設(shè)點(diǎn),由,解得,
由點(diǎn)在橢圓外的拋物線上一點(diǎn),則,
直線的斜率為(且),
直線的斜率為(且),
則(且),
則(且),
令,則且,設(shè)函數(shù)(且),
則函數(shù)在區(qū)間和上均為增函數(shù),
當(dāng)時(shí),,即;
當(dāng)時(shí),.
因此,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的極值;
(2)①討論函數(shù)的單調(diào)性;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在R上的偶函數(shù)且以2為周期,則“為上的增函數(shù)”是“為上的減函數(shù)”的
A. 充分而不必要的條件B. 必要而不充分的條件
C. 充要條件D. 既不充分也不必要的條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a∈R,命題p:x∈[-2,-1],x2-a≥0,命題q:.
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,定義兩點(diǎn)與之間的“直角距離”為:.現(xiàn)給出下列4個(gè)命題:
①已知、,則為定值;
②已知三點(diǎn)不共線,則必有;
③用表示兩點(diǎn)之間的距離,則;
④若是橢圓上的任意兩點(diǎn),則的最大值為6.
則下列判斷正確的為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,以“立德樹(shù)人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對(duì)初三畢業(yè)學(xué)生進(jìn)行體育測(cè)試,是激發(fā)學(xué)生、家長(zhǎng)和學(xué)校積極開(kāi)展體育活動(dòng),保證學(xué)生健康成長(zhǎng)的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測(cè)試,三項(xiàng)考試滿分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開(kāi)始時(shí)要掌握全年級(jí)學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到下邊頻率分布直方圖,且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳繩個(gè)數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級(jí)所有學(xué)生的跳繩個(gè)數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計(jì)總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點(diǎn)值代替).根據(jù)往年經(jīng)驗(yàn),該校初三年級(jí)學(xué)生經(jīng)過(guò)一年的訓(xùn)練,正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)都有明顯進(jìn)步,假設(shè)今年正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)比初三上學(xué)期開(kāi)始時(shí)個(gè)數(shù)增加10個(gè),現(xiàn)利用所得正態(tài)分布模型:
預(yù)計(jì)全年級(jí)恰有2000名學(xué)生,正式測(cè)試每分鐘跳182個(gè)以上的人數(shù);(結(jié)果四舍五入到整數(shù))
若在全年級(jí)所有學(xué)生中任意選取3人,記正式測(cè)試時(shí)每分鐘跳195以上的人數(shù)為ξ,求隨機(jī)變量的分布列和期望.
附:若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分13分) 已知雙曲線的兩個(gè)焦點(diǎn)為的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)Q(0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, △ABC 中, ACB 90 , ABC 30 , BC ,在三角形內(nèi)挖去一個(gè)半圓(圓心 O 在邊 BC 上,半圓與 AC,AB 分別相切于點(diǎn) C,M ,與 BC 交于點(diǎn) N ),將其繞直線 BC旋轉(zhuǎn)一周得到一個(gè)旋轉(zhuǎn)體,則該旋轉(zhuǎn)體體積為________;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,坐標(biāo)原點(diǎn)為.橢圓的動(dòng)弦過(guò)右焦點(diǎn)且不垂直于坐標(biāo)軸, 的中點(diǎn)為,過(guò)且垂直于線段的直線交射線于點(diǎn)
(I)證明:點(diǎn)在直線上;
(Ⅱ)當(dāng)四邊形是平行四邊形時(shí),求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com