已知函數(shù)f(x)=mx2-3x+1的零點至少有一個在原點右側(cè),求實數(shù)m的范圍.

解:(1)當(dāng)m=0時,f(x)=-3x+1,直線與x軸的交點為,即函數(shù)的零點為,在原點右側(cè),符合題意.
(2)當(dāng)m≠0時,∵f(0)=1,∴拋物線過點(0,1).
若m<0時,f(x)的開口向下,如圖所示.

二次函數(shù)的兩個零點必然是一個在原點右側(cè),一個在原點左側(cè).
若m>0,f(x)的開口向上,如圖所示,要使函數(shù)的零點在原點右側(cè),當(dāng)且僅當(dāng)△=9-4m≥0即可,解得0<m≤

綜上所述,m的取值范圍為(-∞,]
分析:根據(jù)題意可得,二次函數(shù)的圖象與x軸的交點至少有一個在原點的右側(cè),有兩種情況,一是只有一個在右側(cè),二是兩個都在右側(cè),分類解答即可.
點評:本題考查一元二次方程根的分布與系數(shù)的關(guān)系,考查分類討論思想,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m•2x+t的圖象經(jīng)過點A(1,1)、B(2,3)及C(n,Sn),Sn為數(shù)列{an}的前n項和,n∈N*
(1)求Sn及an;
(2)若數(shù)列{cn}滿足cn=6nan-n,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m(x+
1
x
)的圖象與h(x)=(x+
1
x
)+2的圖象關(guān)于點A(0,1)對稱.
(1)求m的值;
(2)若g(x)=f(x)+
a
4x
在(0,2]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
m
n
,其中
m
=(sinωx+cosωx,
3
cosωx)
n
=(cosωx-sinωx,2sinωx),其中ω>0,若f(x)相鄰兩對稱軸間的距離不小于
π
2

(Ⅰ)求ω的取值范圍;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,a=
3
,b+c=3,當(dāng)ω最大時,f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下兩題任選一題:(若兩題都作,按第一題評分)
(一):在極坐標(biāo)系中,圓ρ=2cosθ的圓心到直線θ=
π
3
(ρ∈R)的距離
3
2
3
2
;
(二):已知函數(shù)f(x)=m-|x-2|,m∈R,當(dāng)不等式f(x+2)≥0的解集為[-2,2]時,實數(shù)m的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集為[-1,1].
(1)求m的值;
(2)若a,b,c∈R+,且
1
a
+
1
2b
+
1
3c
=m,求Z=a+2b+3c的最小值.

查看答案和解析>>

同步練習(xí)冊答案